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have a thorough understanding of the e�ect the temperature on the signal strength and a good
understanding of the e�ect of temperature on timing. We have also started to evaluate the e�ect
of temperature on sensing and energy consumption. With respect to interference, we have started
to de�ne some initial analytical models to capture the bursty nature of various interference sources.
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Executive Summary

The performance of wireless sensor and actuator networks (WSAN) depends on
two fundamental factors: the hardware platform and the characteristic of the sur-
rounding environment. A network of sensor motes that is moved from an indoor commercial
building to an outdoor forest will have a dramatically di�erent performance. The role of the
environment is central to the operation of these networks. But not only the environment plays
a signi�cant role, the hardware platform plays a major role too. If for a given environment, say
an outdoor forest, we change the sensor nodes for a platform with a di�erent radio transceiver
or microprocessor, the performance can change dramatically as well. Our goal is to analyze,
model and predict the e�ects of hardware and environmental factors on the performance of
WSAN.

This report focuses on an environmental variable that has received little atten-
tion in the research community, but that nevertheless has a signi�cant e�ect on
the operation of the network: temperature. There is an extensive body of knowledge
on the impact of several environmental variables on the performance of WSAN. By and large,
the focus of these studies has been on analysing the degradation of link qualities caused by
e�ects such as obstacles, foliage and climatological events such as fog and rain. Similarly to
these environmental variables, temperature also a�ects link quality by reducing the received
signal strength (RSS) by several dBs. But the impact of temperature does not stop there.
Due to the general e�ect of temperature on electric conductors and semiconductors, changes
in temperature can also a�ect the timing accuracy (clocks), sensing accuracy (analog to digi-
tal converters), and energy consumption (battery capacity) of the hardware platforms. These
e�ects play a signi�cant role on the performance of network protocols, on the accuracy of the
delivered data, and on the lifetime of the network.

Our most important contribution is a thorough analysis of the e�ect of temper-
ature on the received signal strength (RSS) and radio coverage of low-power radio
transceivers. Our work is motivated by some initial studies reporting how temperature a�ects
the quality of low-power links. These studies, however, were not systematic and the �ndings
could not be generalized � the experiments were performed on a single platform and on a rel-
atively short range of temperatures. To gain a deeper insight on the e�ect of temperature,
we developed a low-cost yet accurate testbed that allows us to test a wide range of temper-
atures with �ne granularity, from 0◦C to 70◦C. This testbed allows us to vary the on-board
temperature of sensor nodes in a repeatable fashion, and we study systematically the impact
of temperature on various sensornet platforms.

Copyright © 2013 RELYonIT consortium: all rights reserved page 6
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We show that temperature a�ects transmitting and receiving nodes di�erently,
and that all platforms follow a similar trend that can be captured by a simple �rst-
order model. This general model allows us to predict the RSS decay for a given temperature
pro�le. For example, if a WSAN network is deployed in an environment where the maximum
and minimum day temperature lead to a delta of 40◦C (a normal change considering that nodes
exposed to sun light can reach high temperatures), our model can predict the change in RSS
(for instance, a change of 5-6 dB for the Maxfor platform). Our contribution goes beyond
the analysis of the RSS decay. We integrate our �rst-order model with the well-known log-
normal path loss model to quantify the impact of temperature on the transmission range, i.e.,
the distance covered by a link. Quantifying the e�ect on the transmission range is central to
understanding the e�ect on upper layer protocols, because di�erent transmission ranges lead
to fundamentally di�erent topologies. Based on data from a year-long deployment in Sweden,
we show how the topology of the network changes in a real scenario.

Copyright © 2013 RELYonIT consortium: all rights reserved page 7



1 Introduction

This deliverable describes the progress made so far in modelling environmental phenomena
and hardware platforms. While there is a long list of environmental phenomena a�ecting the
performance of wireless sensor and actuator networks (WSAN), in RELYonIT we focus on two
phenomena:

Temperature Since the inception of modern electronic devices, temperature has been known
to a�ect their performance. The clearest and simplest example is the operational range
given on the data sheets and user guides of all electronic devices. However, while the
e�ect of temperature is well understood at low hardware levels (individual electrical and
electronic components), the impact of these low-level e�ects on the overall networking
performance of complex sensor systems has not been fully investigated.

Interference In the last decade, the widespread adoption of wireless technologies has increased
the demand for bandwidth. This trend is leading to severe radio interference problems,
especially, on the license-free ISM bands � a band that is used by most newly developed
systems. Within the interference domain, our goal is two bridge the gap between (i)
theoretical studies that rely on some unrealistic assumptions, and (ii) empirical studies
that focus on single platforms and environments. We want to develop simple models that
capture the impact of interference in a generic and platform-independent manner.

With regards to hardware platforms, our modelling e�orts focus on four pillars that are
fundamental for the operation of WSAN:

Communication Arguably the most fundamental capability required by a network is that of
communicating with peers. In any computer network it is henceforth central to identify
the elements that a�ect communication. In RELYonIT, we focus on modelling the e�ects
that temperature and interference have on the received signal strength (RSS) and signal
to noise ratio (SNR) of radio communication.

Timing Several protocols on the Data Link, Network and Transport Layers rely on time syn-
chronization. Clock drift can a�ect the timely operation of the network. Our e�orts will
be aimed at modelling the e�ect of temperature on clock drift.

Sensing One of the main promises of the Future Internet is to bridge the gap between the
computing and the real world. To ful�l this vision, a network must have the capability
to sense reliably. Temperature can a�ect the operation of key sensing components such
as analog-to-digital convertors (by introducing noise to the measurements). Similarly to
the above two pillars, the aim of RELYonIT is to model this negative phenomena in a
simple and generic way.

Copyright © 2013 RELYonIT consortium: all rights reserved page 8
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Energy consumption In several of the scenarios envisioned for sensor network systems, the
network will be left unattended and without a constant power supply. Due to this reason,
energy e�ciency has been studied extensively. The extra energy expenditure caused by
packet loss (due to interference) is relatively well understood, but the e�ect of temperature
on the overall lifetime of the network has not been studied in the same thorough manner.
Our e�orts are aimed at this latter direction.

1.1 Our progress thus far

The bird's eye view of our progress is captured in the tables below. The darker the color of
the cell, the greater the progress. During the �rst eight months, our research work has focused
more on platform models than on environmental models, and more on temperature than on
interference. The reasons for these decisions are twofold.

Focus on temperature The research community has paid signi�cantly less attention to the
e�ect of temperature than to the e�ect of interference. We therefore saw more potential
for novel contributions by focusing on temperature �rst.

Focus on platforms During the �rst months we focused our attention on developing a tem-
perature testbed. With this testbed at hand, we thought that it was more important to
have �rst a general understanding about the e�ect of temperature on di�erent platforms,
and then delve into more detailed e�ects (environmental models). We also believe that
the protocol models will determine the characteristics of the environment that we should
focus on (and protocol modelling is a subsequent task).

Table 1.1: Environmental Models
Temperature Interference

Table 1.2: Platform Models
Impact of Impact of

Temperature Interference
Signal strength
Time synchronization
Sensing accuracy
Energy consumption

Overall, the concrete contributions of our work on Tasks 1.1 and Task 1.2 are:

� The design and implementation of a temperature-controlled testbed speci�cally designed
to test sensornet hardware platforms.

Copyright © 2013 RELYonIT consortium: all rights reserved page 9



RELYonIT
Dependability for the Internet of Things

Report on
Environmental and Platform Models

� A thorough evaluation of the impact of temperature on the signal strength of multiple
hardware platforms.

� A generic platform model to capture the impact of temperature on the received signal
strength and on the transmission range of sensornet hardware.

� A thorough evaluation of the impact of temperature on clock drift.

� Initial insights on the e�ect of temperature on sensing accuracy and energy consumption.

� An initial model for environmental temperature.

� Initial platform and environmental models for interference e�ects.

Copyright © 2013 RELYonIT consortium: all rights reserved page 10



2 Temperature - Platform Models

Environmental temperature is known to largely a�ect the communication performance of wire-
less sensor and actuator networks (WSAN), but existing work often neglects its impact. For
example, temperature can a�ect clock drift, crystal oscillator startup time, battery capacity
and discharge, as well as the performance of the radio transceiver. In a WSAN exposed to harsh
environmental conditions, daily or hourly changes in temperature can dramatically reduce the
throughput, increase the delay, or even lead to network partitions.
Since temperature has a speci�c impact on all hardware components used to build sensor

nodes, di�erent hardware platforms will be a�ected in a di�erent way. Existing datasheets
describe to some extent the impact of temperature on the component performance, but the
existing data is often not detailed enough to derive platform models. For example, the datasheet
of the CC2420 transceiver (a common component used in current sensor nodes [41]) only states
the temperature range in which the transceiver is operational but it does not state how link
quality and transmission error rates vary as a function of temperature within the allowed
temperature range.
In this section, using experimental facilities from WP4, we develop platform models that

capture how temperature a�ects the signal strength of low-power communications (Section 2.1)
and consequently the topology of a network (Section 2.2), clock drift (Section 2.3), sensing
accuracy (Section 2.4), and energy consumption (Section 2.5).

2.1 Impact of temperature on signal strength

Temperature is known to have a signi�cant e�ect on the performance of radio transceivers:
the higher the temperature, the lower the quality of links. Many studies describing experi-
ences from WSN outdoor deployments have reported that diurnal (day/night) and seasonal
(summer/winter) �uctuations of ambient temperature have a strong impact on communication
quality. Lin et al. [28] have found a daily variation in the received signal strength (RSS) of
up to 6 dBm, with the highest RSS values being recorded during night-time. Similarly, in
their deployment in an Australian outdoor park, Sun and Cardell-Oliver [39] have measured
on-board temperature daily variations between 10 and 50 ◦C, and noticed that links perform
very di�erently between day and night. Also Thelen et al. [47] have noticed a drastic decrease
of RSS at high temperatures in their potato-�eld deployment.
Results by Bannister et al. [6] from an outdoor deployment and from experiments in con-

trolled scenarios have revealed that an increase in temperature causes a speci�c reduction in
RSS. In their experiments in a climate chamber, the authors observe a linear decrease in RSS
of about 8 dB over the temperature range 25-65 ◦C and show that this reduction may have
severe consequences on the connectivity of a network. These results were con�rmed by experi-
ments by Boano et al. [9], [8], showing that one can safely decrease the transmission power of
communications at low temperatures without deteriorating the performance of the network.

Copyright © 2013 RELYonIT consortium: all rights reserved page 11
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A recent long-term outdoor deployment by Wennerström et al. [48] has further shown that
the average packet reception rate (PRR) in a WSN of 16 Tmote Sky nodes dropped by more
than 30% when changing temperature from -5 to 25 ◦C, and that a clear degradation in PRR
and average link quality occurred during summer, con�rming that daily and seasonal �uctua-
tions of ambient temperature have a strong impact on the quality of sensornet communications.

These existing works simply report the degradation of signal strength and link quality as a
consequence of an increase in ambient temperature and do not provide a deeper analysis of
the problem. In addition, every reported analysis is unique in terms of experimental setup
and hardware. The used radio chips range from Nordic NRF903 [39] and CC1000 [47] to the
popular CC1020 [8] and CC2420 transceivers [28], [48], making it di�cult to separate general
from hardware-speci�c e�ects. Bannister et al. [6] have attempted to quantify the loss of RSS
due to temperature changes, but only for a limited temperature range and for a single radio
chip. Furthermore, when simulating the reduction of communication range and connectivity
degradation due to an increase in ambient temperature, the authors assume that communicat-
ing nodes have similar temperatures.

Therefore, we go beyond existing work and study the impact of sender and receiver tem-
perature on link quality systematically using di�erent hardware platforms. First, we study the
evolution of link quality over one year in an outdoor deployment in Sweden. Our analysis shows
that temperature has a strong impact on communication, with visible daily and seasonal dif-
ferences. Building on top of these results, we carry out a large set of experiments in controlled
settings, where we can repeat and alter the conditions at di�erent nodes separately. In all
our experiments, we analyse the impact of temperature by measuring the hardware-based link
quality metrics in IEEE 802.15.4 compliant radio transceivers [3], namely the received signal
strength indicator upon packet reception (RSSI) and in absence of packet transmissions (noise
�oor), and the link quality indicator (LQI)1.

2.1.1 Long-Term Outdoor Deployment

We study the evolution of link quality in a sensor network comprising 16 TelosB sensor nodes
deployed outside Uppsala, Sweden, in an open �eld isolated from human activity and absence
of electromagnetic interference. Sensor nodes are mounted on poles along a 80 meter straight
line at intervals of 0, 20, 40, and 80 meters: on each pole, two nodes are mounted at 0.5 and
1.5 meters height, respectively. The nodes are powered via USB and attached to a Sensei-UU
testbed [31], ensuring reliable and continuous data logging.
The software running on the sensor nodes periodically sends packets between every possible

pair of nodes and works as follows. Each node is assigned the sender-role in a round-robin
fashion every 30 seconds. During this phase, the designated sender transmits one packet per
second addressed to each of the other nodes, again in a round-robin manner. When a packet is
received by the intended recipient, a response packet addressed to the sender is sent. Each time
a sensor node receives a packet � including when it is not the intended recipient � it logs several
statistics about the received packet, namely RSSI, LQI, and noise �oor. Please notice that the

1Part of the material used in this section has been submitted for publication [12].
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Figure 2.1: Temperature has a strong impact on the quality of links in our outdoor WSN.
During daytime, when temperature is high, there is a signi�cant reduction in PRR
(a). Also the trend of RSSI and noise �oor resembles the one of temperature,
with a sharp decrease when temperature increases (b). Values are averaged over a
timespan of 10 minutes.
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Figure 2.2: The relationship between RSSI and temperature (a) and between noise �oor and
temperature (b) can be approximated as a linear function, and the trend is similar
for di�erent nodes.

RSSI readings from all sensor nodes employed in our experiments are uncalibrated. On-board
ambient temperature is measured on each node every two seconds using the on-board SHT11
temperature sensor. More details on the experimental setup can be found in [48].

Impact of temperature on PRR. To highlight the impact that ambient temperature has
on the links deployed in our outdoor WSN, we focus on a speci�c link, close to the edge of
the communication range. Fig. 2.1(a) (top) shows the temperature of two nodes (transmitter
and receiver) forming a unidirectional link during a week in September. Temperature varies as
much as 40 ◦C between day and night since sensor nodes are enclosed into air-tight enclosures
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1 year 1 month 1 day 1 hour
Lowest temp. (◦C) -22.2 -3.0 7.2 21.2
Highest temp. (◦C) 61.3 63.7 63.8 55.9
Temp. di�erence 82.5 66.7 56.6 34.9

Table 2.1: Largest temperature variations on a single node as seen in our outdoor deployment.

and exposed to direct sunlight. Therefore daily temperature �uctuations may cause a combined
overall variation between the two nodes of up to 80 ◦C. Although the highest variations occur
over the 24-hours, temperature can �uctuate by as much as 34.9 ◦C within one hour, as shown in
Table 2.1, in which the largest temperature ranges observed during the 12-months deployment
for di�erent time intervals are summarized.
Fig. 2.1(a) (bottom) further shows that each substantial increase in temperature (typically

occurring during daytime) results in a decrease in PRR, leading to an almost complete disrup-
tion of the connectivity between the two nodes.

Impact of temperature on RSSI and noise �oor. The decrease in PRR is strongly cor-
related with a decrease in the RSSI computed over the received packets, as shown in Fig. 2.1(b)
(top), hinting that the change in temperature � and not external interference � was the cause
of the packet loss. In particular, the RSSI �uctuates between -84 and -92 dBm, the latter being
the threshold below which no packets are received. Interestingly, also the noise �oor follows a
trend similar to the RSSI and decreases as temperature increases, but to a much lower extent,
as shown in Fig. 2.1(b) (bottom).
The strong correlation between temperature, RSSI, and noise �oor is highlighted in Fig. 2.2(a)

and 2.2(b), respectively. Fig. 2.2(a) shows the RSSI and the combined temperature of sender
and receiver for nine links with di�erent link quality over a timespan of three days. The
relationship between temperature and RSSI can be approximated as a linear function and is
clearly visible despite the intrinsic noise produced by long-term measurements. Using linear
regression we have observed that di�erent links have a similar trend, with an average slope of
-0.205 and a standard deviation of 0.026.
Fig. 2.2(b) shows the noise �oor of �ve nodes over the same 3 days. Also in this case,

the relationship with temperature is approximately linear, with a similar slope among di�erent
nodes, but with a less pronounced decrease compared to RSSI (average slope of -0.034 ± 0.006).

2.1.2 Controlled Testbed Experiments

To get a deeper understanding of the e�ects observed in Sect. 2.1.1, we use experimental fa-
cilities from WP4, and augment existing sensornet testbed with the ability of varying the
on-board temperature of sensor motes and reproduce the impact of temperature on link quality
in a repeatable fashion (for further details, please refer to Deliverable 4.2). We use this low-cost
testbed infrastructure to systematically study the impact of temperature on di�erent hardware
platforms and to isolate the e�ects of temperature on transmitting and receiving nodes.
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(a) Setup overview (b) Sketch of a Peltier enclosure

Figure 2.3: Experimental setup in controlled testbed experiments.

Fig. 2.3(a) shows an overview of our controlled experimental setup. We have extended an
existing WSN testbed with the ability of varying the on-board temperature of sensor motes in
the range -5 to +80 ◦C using infrared light bulbs placed on top of each sensor node. The light
bulbs can be remotely dimmed using the 868 MHz frequency, and hence their operations do
not interfere with the communications between the wireless sensor nodes, as the latter use the
2.4 GHz ISM band. In order to cool down the motes below room temperature, we have built
custom Polystyrene enclosures as shown in Fig. 2.3(b), in which, in addition to the light bulb,
a Peltier air-to-air assembly module by Custom Thermoelectric cools the temperature down to
-5 ◦C when the enclosure is kept at room temperature and the light bulb is o�. As we only have
a limited number of Peltier enclosures, some of the nodes in the testbed are only warmed by
the infrared light bulbs between room temperature and their maximum operating temperature
range.
Our testbed is composed of Maxfor MTM-CM5000MSP and Zolertia Z1 nodes employ-

ing the CC2420 radio [41], as well as of Arago Systems WisMotes employing the CC2520
transceiver [42]. Sensor nodes are divided in pairs and form bidirectional links operating on
di�erent physical channels to avoid internal interference. All sensor nodes run the same Con-
tiki software: each sensor node continuously measures the ambient temperature and relative
humidity using the on-board SHT11 or SHT71 digital sensors, and periodically sends packets
to its intended receiver at a speed of 128 packets per second using di�erent transmission power
levels. Statistics about the received packets are logged using the USB backchannel and are
available remotely.

Validation of our controlled setup. Using our controlled testbed setup, we are able
to reproduce the impact of temperature on link quality in a very �ne-grained way. In a �rst
experiment using Maxfor nodes, every link in the testbed is exposed to three heat cycles. First,
each individual node, i.e., �rst the transmitter and then the receiver, is heated from 0 up to
65 ◦C. Afterwards, both nodes are heated in the same temperature range at the same time.
Fig. 2.4(a) illustrates the impact of temperature on PRR and LQI on a particular link. The
evolution of temperature at the transmitter and at the receiver over the 13-hours experiment
is shown in the top �gure. In correspondence to each increase of temperature, PRR and LQI
decrease signi�cantly, with the highest impact occurring when both nodes are heated. With

Copyright © 2013 RELYonIT consortium: all rights reserved page 15



RELYonIT
Dependability for the Internet of Things

Report on
Environmental and Platform Models

 0
 20
 40
 60
 80

00:00 02:00 04:00 06:00 08:00 10:00 12:00

Te
m

p
 [

°C
]

Receiver Transmitter

 0
 0.2
 0.4
 0.6
 0.8

 1

00:00 02:00 04:00 06:00 08:00 10:00 12:00

P
R

R NO PACKET
RECEIVED

 60
 75
 90

 105

00:00 02:00 04:00 06:00 08:00 10:00 12:00

LQ
I

Time [hh:mm]

NO PACKET
RECEIVED

(a) PRR and LQI

-94

-92

-90

-88

-86

00:00 02:00 04:00 06:00 08:00 10:00 12:00

R
S

S
I 
[d

B
m

]

NO PACKET
RECEIVED

-98

-97

-96

-95

00:00 02:00 04:00 06:00 08:00 10:00 12:00

N
o
is

e
 fl

o
o
r 

[d
B

m
]

Time [hh:mm]

NO PACKET
RECEIVED

(b) RSSI and Noise �oor

Figure 2.4: Impact of temperature on the quality of links in our controlled testbed. We heat
transmitter and receiver nodes separately �rst, and then both of them at the same
time. When temperature increases, PRR, LQI, and RSSI decrease signi�cantly,
with the highest impact occurring when both nodes are heated at the same time.
The periodic noise is due to a Wi-Fi access point beaconing in proximity of the
testbed.

both nodes heated, indeed, no packet was received and the connectivity between the two nodes
was interrupted until the temperature started to decrease. Fig. 2.4(a) also shows that the
packet loss rate is more pronounced when the transmitter is heated compared to the case in
which only the receiver is heated, something that we have observed in the majority of links in
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Figure 2.5: Figure (a) shows that the relationship between RSSI and temperature is simi-
lar when using di�erent hardware platform and can be approximated as a linear
function, but with di�erent parameters. Figure (b) shows the non-linearities in
the response of the CC2420 radio measured using Maxfor nodes. Temperature on
the x-axis is computed as the average temperature of the transmitter and receiver
temperature.

our testbed.
Fig. 2.4(b) illustrates the impact of temperature on RSSI (top �gure) and noise �oor (bottom

�gure). The RSSI decreases in a similar way when transmitter and receiver are heated sep-
arately, whereas the decrease is more pronounced if both transmitter and receiver are heated
at the same time. This proves that temperature decreases both the transmitted and received
power [6], whereas the noise �oor only decreases when the receiver node is heated, with an
absolute variation smaller than the one of RSSI.
These results hence prove the validity of our setup and con�rm the measurements obtained

in our outdoor deployment, quantifying precisely the impact on temperature on each individ-
ual node. We now derive a set of observations obtained running experiments using the same
experimental setup, i.e., three heat cycles in which each node is heated individually �rst and
then both nodes are heated at the same time, on di�erent hardware platforms.

The decrease in RSSI is consistent among di�erent platforms. The trend observed
in our outdoor deployment showing that RSSI decreases in an approximately linear fashion
with temperature holds for di�erent platforms and di�erent radio chips, but with a di�erent
slope. Fig. 2.5(a) shows the relationship between RSSI and temperature obtained on di�erent
platforms when heating both nodes at the same time. The hardware platforms employing the
same CC2420 radio exhibit approximately the same slope.

The decrease in RSSI does not depend on how quickly temperature changes. In
our setup, the heat cycles are characterized by a slow increase in temperature followed by a
quicker cooling phase, as can be seen in Fig. 2.4(a). This allows us to observe that both RSSI
and noise �oor are not a�ected by how quickly temperature varies. Hence, the impact of tem-
perature can be modelled using the absolute temperature value at the transmitter and receiver
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Figure 2.6: Relationship between RSSI, noise �oor, SNR and temperature when transmitter
(blue) and receiver (black) nodes are heated individually, and when both nodes
(red) are heated at the same time.

nodes.

Discrete steps. On close inspection in Fig. 2.5(a), one can observe discrete steps in the
relationship between RSSI and temperature. For the CC2420 platforms, the size of the promi-
nent steps is 2 dBm, whereas for platforms employing the CC2520 radio the step is 1 dBm
large. Bannister [5] has attributed the loss of RSSI to the loss of gain in the CC2420 Low Noise
Ampli�er (LNA). Our experiments bring further evidence to strengthen this claim, as there are
references to 2 dBm steps in the CC2420 datasheet [41] with regard to the operation of the
Automatic Gain Controller (AGC).

Hysteresis. Fig. 2.5(a) also shows an hysteresis in the relationship between RSSI and tem-
perature that can be seen comparing the RSSI curve obtained when heating and when cooling
down the motes. As for the discrete steps, the hysteresis also can be attributed to the opera-
tion of the AGC in the CC2420 radio. According to the CC2420 datasheet, hysteresis on the
switching between di�erent RF front-end gain modes is set to 2 dBm [41].

Non-linearity in the CC2420 curve. In our experiments, we have also noticed visible
non-linearities when the RSSI is ≈ -28 and -58 dBm in the CC2420 platform, as shown in
Fig. 2.5(b). These non-linearities were also measured by Chen and Terzis [13], and may lead to
a false approximation in case the RSSI of the considered link falls exactly in this region (as in
the experiments of [6]). When deriving our linear approximation for the CC2420 transceiver,
we hence do not consider links falling in this range.

RSSI loss on transmitter and receiver. Fig. 2.6(a) shows the relationship between RSSI
and temperature obtained on Maxfor nodes when transmitter and receiver nodes are heated
individually and when both nodes are heated at the same time. Top and bottom �gures refer
to the same link, but are obtained using a di�erent transmission power. Despite the link is

Copyright © 2013 RELYonIT consortium: all rights reserved page 18



RELYonIT
Dependability for the Internet of Things

Report on
Environmental and Platform Models

the same, the relationship between RSSI and temperature is slightly di�erent, with a steeper
decrease when the receiver is heated in the top �gure. Although a comparison between curves
is di�cult due to the AGC operations (depending on whether we capture the transition be-
tween two discrete steps, we may obtain slightly di�erent slopes), by averaging the data from
all our experiments we have obtained a relationship between receiver and transmitter of 0.5348
± 0.061. The RSSI seems hence to have a slightly steeper slope when the receiver node is heated.

Impact on noise �oor and SNR. Fig. 2.6(b) illustrates how noise �oor, RSSI, and signal
to noise ratio (SNR) vary on a given link when transmitter and receiver nodes are heated
individually and at the same time. Since the noise �oor decreases only when the receiver
is heated, an increase in temperature on the transmitter has an higher impact on the SNR
compared to an increase in temperature at the receiver. This also explains the di�erent impact
in PRR when heating the nodes individually that we observed in Fig. 2.4(a).

2.1.3 Generalized model of the e�ect of temperature on RSS

The e�ect of temperature on electric conductors and semiconductors is well known. Various
models have been created for a large range of devices to capture the relation between ambient
temperature and electric conductance (and current leakage). Our goal is to build on top of
this knowledge to create a generic model for low-power radio transceivers. It is important to
remark that the goal of our model is not to benchmark a speci�c radio chip against others, as
this is already done by manufacturers. Our goal is to develop a simple model to predict the
performance of a network under extreme environmental settings. We now describe the over-
arching e�ect of temperature on radio transceivers and derive a generic model for low-power
wireless transceivers.

In electric conductors, a higher temperature increases the resistance of the medium, whereas
in semiconductors it leads to current leakages. In practice this means that, for a given volt-
age, a higher temperature reduces the current and hence the power of a device. In radio
transceivers, these phenomena imply that a raise in temperature will reduce the SNR. A de-
crease in SNR leads to a lower link quality and a shorter radio link, which in turn may lead to
lower throughput, higher delay or even network partitioning. Hence, our goal is to model the
e�ect of temperature on SNR. Denoting PL as the path loss between a transmitter-receiver
pair, Pt as the transmission power, Pr as the received power, and Pn as the noise �oor at the
receiver, the SNR is known to be:

SNR(dB) = Pt − PL− Pn
= (Pt − Pn)− (Pt − Pr)

(2.1)

As we have shown in our empirical measurements, an increasing temperature has 3 main
e�ects on the signal strength of radio transmissions; it (i) decreases the transmitted power, (ii)
decreases the received power, and (iii) decreases the noise �oor. We now model these three
e�ects in Eq. 2.1.

A �rst-order model Denoting α, β, γ as constants with units dB/K, and Tt, Tr as the
temperature in Kelvin of transmitter and receiver, the e�ect of temperature on SNR can be
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de�ned as:

SNR = (Pt − α∆Tt)− (PL+ β∆Tr)

−(Pn − γ∆Tr + 10 log10(1 + ∆Tr
Tr

))

= Pt − PL− Pn − α∆Tt
−(β − γ)∆Tr − 10 log10(1 + ∆Tr

Tr
)

(2.2)

The proportional relation between ∆T and the constants α (e�ect on transmitted power), β
(e�ect on received power) and γ (e�ect on noise �oor) is based on the empirical observations
made in the previous sections. The term 10 log10(1+ ∆Tr

Tr
) is derived analytically from the well-

known thermal equation. There are two important trends to highlight in this model. First,
changes in temperature have a higher impact on the transmitted and received powers (linear
relation of α and β), than on the thermal noise (logarithmic relation). Second, to some extent
it is counter-intuitive that a higher temperature decreases the noise �oor (negative sign of γ).
This e�ect was also observed by Bannister, and he hypothesizes that it is due to the losses in
the signal ampli�er [5]. That is, a higher temperature not only reduces the gain of the signal
but also the gain of the noise, and hence, the received signal strength (RSSI) is lower for both.
The accuracy of our model depends on identifying the right values for α, β and γ. In our

case, these parameters are given by the slopes of the linear trends observed in our empirical
results. These parameters are platform dependant, and hence require a systematic and �ne-
grained evaluation. Our testbed was designed to accomplish exactly that. For example, a
network manager willing to deploy a network using the Maxfor platform, can use the slopes
obtained in Fig. 2.6(b): α = 0.065 , β = 0.088 and γ = 0.037. Assuming that the network will
be deployed in an environment where the maximum and minimum day temperature are 50 and
5◦C respectively, the network manager can predict that the links can su�er an attenuation of
(α + β − γ)∆T = 5.22 dB (5 dB according to the SNR measurements in Figure 2.6(b) top).
This level of attenuation can easily push a good link (with 100% PRR) to have a PRR of 0%.

2.2 Impact of Temperature on Radio Range Shrinkage and

Network Topology

Our experiments have clearly established that the Received Signal Strength (RSS) decreases
with an increase of the temperature. The numerical value of this reduction itself does not
highlight its impact on the communication. In this section we investigate the impact of the
temperature on the network connectivity in terms of the radio range and the network topology.

2.2.1 Radio Range Shrinkage and Loss of Links Due to Temperature

The received signal strength (RSS) decreases with the increase of temperature. A lower RSS
has a direct impact on the transmission range of nodes. We analyzed the impact of temperature
on the transmission range.
We base our analysis on the Log-Distance Path Loss Model. According to this model, the

path loss at distance d is

Pt − Pr = PL0 + 10ηlog10
d

d0
+Xg
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Figure 2.7: The range shrinks with the increase of temperature.

Pt is the transmitted power in decibel, and Pr is the received power in decibel. PL0 is the
path loss (in decibel) at a reference distance d0, η is the path loss exponent, and Xg is the
attenuation due to fading. In this analysis we assume that Xg = 0.

Pr = Pt − PL0 − 10ηlog10
d

d0

Assume that the minimum power required to detect the signal at the receiver (receiver
sensitivity) is Pmin, and this power is at dmax distance from the receiver.

Pmin = Pt − PL0 − 10ηlog10
dmax
d0

(2.3)

We know from our experiments that the power at the receiver goes down further because of
the increase in temperature. This loss is proportional to the increase (∆t) in the temperature.
Assume that all the nodes are heated uniformly for the following discussion. We can modify
the above equation to take this into account.

P∆t = Pt − PL0 − 10ηlog10
dmax
d0
− k∆t

P∆t is the new signal power at the receiver, and k is the gradient of the best �t line for our
traces.
It is obvious that P∆t < Pmin. Therefore, d must be reduced to d∆t in order to achieve Pmin.
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Pmin = Pt − PL0 − 10ηlog10
d∆t

d0
− k∆t (2.4)

From 2.3 and 2.4,

Pt − PL0 − 10ηlog10
dmax
d0

= Pt − PL0 − 10ηlog10
d∆t

d0
− k∆t

−10ηlog10
dmax
d0

= −10ηlog10
d∆t

d0
− k∆t

k∆t = 10ηlog10
dmax
d0
− 10ηlog10

d∆t

d0

k∆t = 10ηlog10
dmax
d0

d0

d∆t

k∆t = 10ηlog10
dmax
d∆t

dmax
d∆t

= 10
k∆t
10η

d∆t = dmax ∗ 10
− k∆t

10η (2.5)

Figure 2.7 depicts the loss of range caused by the increase in temperature. The initial range
is set to 100 units at the temperature of 20◦ C. k = 0.17, which is the average tangent for the
RSSI vs temperature plots generated from one of the controlled experiments. The temperature
range (20◦− 60◦ C) and the path loss exponent (η = 2) were selected to match the similar plot
in Bannister's thesis [5]. However, note that only the di�erence in the temperature matters.
This is quite similar to the Figure 12 in Bannister's thesis. However, Bannister mentions

that the results were obtained using a simulation. In our approach these results were obtained
using an analytical model. In addition, Bannister has used values for the receiver sensitivity,
output power, and the path loss at the reference distance as parameters to his model. The
Equation 2.5 clearly indicates that the range is independent of those parameters. The range
after an increase of the temperature by ∆T , only depends on the range before the increase
(dmax), the parameter k, and the path loss exponent (η). This is an important distinction
since the only platform-dependent parameter required for this analysis is k, which can be found
through the experiments mentioned before.
The reduction in the e�ective radio range is quite signi�cant: it is reduced by almost 55%

for an increase of 40◦C.
To analyse the e�ect of the temperature on the number of links in a network topology, we

assume that the nodes are distributed evenly in a two-dimensional plane with a node density
of ρ nodes per unit square. Therefore the number of nodes within the dmax range is ρπd2

max.
We can take this to be the number of direct links that the node in consideration has to other
nodes.
When the temperature is increased by ∆t, the number of other nodes within the range is

reduced to ρπd2
∆t. Hence, the fraction of links lost because of an increase in ∆t◦ C, L(∆t) is

proportional to the reduction in the area covered by the radio range.
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Figure 2.8: A node looses links with the increase of temperature.

L(∆t) =
ρπd2

max−ρπd2
∆t

ρπd2
max

= 1− ∆t2

d2
max

We know from the Equation 2.5 that ∆t
dmax

= 10
− k∆t

10η .
Therefore,

L(∆t) = 1− (10
− k∆t

10η )2

= 1− 10
− k∆t

5η (2.6)

Figure 2.8 depicts the fraction of the links lost with the increase of the temperature. Again,
k = 0.17 is the average gradient as mentioned before, and η is taken as 2.
Almost 80% of the links are lost for an increase of 40◦ C. This result is similar to that

obtained by Bannister (Figure 14 in the thesis [5]) regarding node connectivity.
We assumed, for the sake of simplicity, that both the sender and the receiver have the same

temperature in deriving the equations 2.5 and 2.6. However, by using the model presented in
the previous section and assuming that 10 log10(1 + ∆Tr/Tr) = 0, we can relax this restriction.
This results in the following more generic models for the link loss and the reduction of the
range.
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d∆t = dmax ∗ 10
−α∆Tt+(β−γ)∆Tr

10η (2.7)

L(∆t) = 1− 10
−α∆Tt+(β−γ)∆Tr

5η (2.8)

This model relies on three platform dependent parameters, α, β, and γ, but it allows us to
analyze the e�ects of changing the temperature at the sender and the receiver independently.
For example, we can assume that the temperature is changed only at the sender. Under this
assumption the model reduces to the following.

d∆t = dmax ∗ 10
−α∆Tt

10η (2.9)

L(∆t) = 1− 10
−α∆Tt

5η (2.10)

If we use the value for α from the previous section (α = 0.065), it is clear that the range is
reduced by 26% and the number of links goes down by 45% for an increase of the temperature
by 40◦ C at the sender.
Similarly, if one sender is kept at a constant temperature and the temperature is increased

at the receivers (all the other nodes) we obtain the following model.

d∆t = dmax ∗ 10
− (β−γ)∆Tr

10η (2.11)

L(∆t) = 1− 10
− (β−γ)∆Tr

5η (2.12)

Again, we can use the β (= 0.088), and γ (= 0.037) from the previous section as examples.
For a 40◦ C increase at the receivers the range is reduced by 21% and the numbers of links is
reduced by 37%.
Since α, (= 0.065), is quite close to β − γ, (= 0.051), the losses related to changing the

temperature at only the sender or only the receivers are also quite close. Since there are
also errors in estimating these parameters, it would be reasonable to assume (as a convenient
approximation) that half the loss is due to the receiver and half is due to the sender for this
particular platform used to estimate α, β, and γ.

2.2.2 Impact of Temperature on Network Topology

Temperature changes can considerably a�ect the network topology and, consequentially, routing
protocols. Our path-loss model predicts the loss of range and the loss of links, hence the change
in topology, due to the increase of temperature. This theoretical model has shown that the link
loss can be considerable even for temperature variations observed within a single day.
We have been able to observe these e�ects also on network topologies in actual sensor network

deployments. We used the data generated from a long-term outdoor sensor deployment with
16 nodes at Uppsala University to analyse how temperature a�ects the network topology. The
experimental setup is the same as the one described in the previous section.
Figure 2.9(a) and 2.9(b) depicts the network topologies at 12:00 hours and 23:00 hours of a

particular day. The topology was generated using only the �usable links�; i.e., the links with
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Figure 2.9: The network topology changes considerably within 11 hours.
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Figure 2.10: The number of usable links goes down with the increase in temperature.

Packet Reception Ratios (PRR) larger than 0.5. We can clearly see that there is a signi�cant
change in the network topology during this 11 hour period.
Figure 2.10(a) shows the change of the number of usable links over the 24 hour period and

Figure 2.10(b) shows the variation of temperature, as recorded by each of the 16 nodes, over the
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same time period. The �gures show that the usable links become fewer when the temperature
increases during the day. The number of usable links varied between 57 and 80 within this
24 hour period. The network diameter changed from 4 (at 12:00 hours) to 2 (at 23:00) hours.
During this time period di�erent nodes have experienced temperatures ranging from 13.4◦C to
52.7◦C. These changes would have a signi�cant e�ect on the routing protocols.

2.3 Impact of temperature on clock drift

Of the various components which collectively form an embedded system, some of the most
important and fundamental ones are the clocks. All embedded systems from high end su-
per computers, to hand-held devices right down to integrated System-on-Chip (SoC) plat-
forms [17], [45], [46], all use a variety of clocks operating at di�erent frequencies to drive its
components for processing, communication, storage etc. Unintended variations in the frequency
of these clocks may have unpredictable e�ects on the operations of system components leading
to undesirable consequences with impact upon the applications they support. It is the aim of
this section to measure and model how environmental conditions can a�ect the frequency of
system clocks to help better predict and manage the overall e�ects on the system.
Three types of clocks have been identi�ed in a typical embedded platform [16], [2], [15].

These include:

� The Primary system clock used to control instruction speed in addition to other internal
processor features.

� The Real-time clock used to provide system timing and application synchronisation.

� Other Platform clocks such as the radio clock used to drive radio transmission.

Each of these clocks have been subjected to examinations with respect to varying tempera-
ture and documented within the following sub-sections.

Primary System Clock. A primary system clock can either be external to a processor
or self-contained internally within a processor. Many embedded platforms typically drive their
processor clocks from an internal source to reduce the necessary external components of an
embedded system. This source will drive the various internal Micro-Controller Unit (MCU)
clocks such as the primary clock, which determines the processing speed, as well as other pe-
ripheral/auxiliary clocks used for timers, inter-chip communications etc. It is important that
the source of these clocks is stable over time, as �uctuations in their frequencies can have wide
repercussions and result in possible system failure. Clock instabilities can cause e�ects such as
inconsistent processing speed, communication errors, storage errors to name but a few.

Real-Time Clock. A second platform clock that is common to many system platforms is
the Real-Time Clock (RTC). The RTC is typically driven by an external 32.768 KHz watch
crystal which gives 215 tick in one second, allowing accurate real-world timing for software oper-
ations. The operating system, applications, communication protocols etc. utilise this clock for
scheduling their operations. Variances in this clock can lead to undesirable e�ects on systems,
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and can result in malfunctions within communications and application processes.

Other Platform Clocks. Many platforms employ additional on-board clocks to drive com-
ponents such as storage and communications. These could also be susceptible to temperature
e�ecting the components they drive. It is important to understand how such clocks behave
when temperature varies to ensure dependable operation.
One identi�ed common clock that many wireless embedded platforms [16], [2], [15] include is

the radio clock used to drive communication. This clock is particularly important as �uctuations
in frequency can cause communications failure. For less integrated platforms this clock is often
supplied from an external oscillator, however on more integrated platforms such as the ST
MB950 this clock is driven from the same source as the primary clock and as such will have
the same temperature/frequency pro�le.

2.3.1 Experimental Results

This sub-section will examine how the three identi�ed clocks sources are e�ected by tempera-
ture.

Primary System Clock

To evaluate how the e�ects of temperature can impact upon the stability of the primary system
clock of an embedded system, a number of embedded platforms are observed whilst varying tem-
perature under controlled conditions. These platforms include the Maxfor MTM-CM5000MSP
[29], the Zolertia Z1 [50], and the STMicroelectronics MB950 [38].

Maxfor MTM-CM5000MSP. The �rst system examined is the Maxfor MTM-CM5000MSP
mote, a popular Moteiv Tmote Sky [16] clone. On this platform, the primary MCU is the Texas
Instruments MSP430F1611 [43]. Its system and auxiliary clocks are driven from an internal
Digital Controlled Oscillator (DCO). The frequency of the DCO is factory calibrated, however,
�ne grain adjustments to its operational frequency can be made in software by con�guring the
internal registers, which modi�es the DCO frequency by altering its voltage. For the purpose
of these experiments, the speed of the clock was �xed to 3.9 MHz. This is the default frequency
used by the ContikiOS for this platform.
A simple test application was written for the ContikiOS operating system which toggled

a GPIO pin at a �xed rate determined by the frequency of the system clock. Nodes were
programmed with the complied �rmware for this application. To control the number of variables
for this experiment, all interrupts were disabled. The processor toggled a GPIO pin after a
small �xed number of no operation (NOP) operations in a tight loop. These measures ensured
that only the frequency of the processor would impact upon the rate at which the GPIO pin
was toggled and that no other external factors could obscure these results. The period between
the GPIO toggling was measured externally to the platform using a calibrated oscilloscope
connected to the GPIO pin. The temperature of the mote was controlled using a temperature
lamp, �xed at 10 cm above the node. The power output of the lamp was controlled by a
wireless dimmer switch [22] which facilitated 31 power output levels. The power output, and
therefore the intensity of the heat from the lamp, was slowly increased over a one hour period
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Figure 2.11: Maxfor MTM-CM5000MSP Primary System Clock

by stepping through each of the 31 power setting.
Figure 2.11(a) presents the results of this investigation. The plot contains the results of a

test carried out on three identical Maxfor MTM-CM5000MSP motes. The temperature of each
node started at ambient room temperature of 21 ◦C. The GPIO toggle period was found on
average to be 3.84 µs for all nodes at this temperature. As the temperature increased, the pe-
riod also increased accordingly, showing a proportional linear relationship between the period
and temperature. At a temperature of 60 ◦C the period was measured to be 4.21 µs for node
29, 4.41 µs for node 12 and 4.18 µs for node 2. Figure 2.11(b) depicts these results in regards
to the frequency change (PPM) demonstrating the change in clock frequency in relation to
frequency at room temperature. It is shown that the frequency falls by on average 11.23% after
a temperature increase of 40 ◦C. The rate of change in the period was calculated at -0.257%
for each one degree increase in temperature.

Zolertia Z1. The second platform that was examined was the Zolertia Z1 mote [50]. The
Z1 can be considered as a modern version of the T-mote o�ering much of the same or im-
proved capabilities. The Z1 utilises the MSP430F2617 MCU [44], a second generation MSP430
ultra-low power 16-bit MCU from the same family as the MCU used on the T-mote platform.
Similarly to the Maxfor mote above, the primary clock of the Z1 is sourced from an internal
DCO. To examine the susceptibility to temperature variations of the Z1 DCO, the same test
con�guration as used previously was applied to this platform to measure the frequency variance
over temperature. Only minor changes to the test �rmware were applied for platform speci�c
con�gurations.
Figure 2.12(a) presents the �ndings for the Z1 platform. The period of a �xed frequency

of the primary system clock was again determined by toggling a GPIO pin and its frequency
measured externally. The experiment was repeated on two identical Z1 nodes. The results show
the same linear relationship between period length and temperature but with a signi�cantly
decresed gradient. For node A at ambient temperature of 21 ◦C, the period was measured at
11.95 µs and at 54 ◦C was 12 µs. An increase of only 50 ns over a change of 30 degrees Celsius.
Less variation was seen with node B where the period only increased from 11.91 µs to 11.93
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Figure 2.12: Zoltertia Z1 Primary System Clock

µs over the 30 degrees range, demonstrating a change of 20 ns. Figure 2.12(a) demonstrates
how clock frequency changed over this temperature range. As the temperature increased of the
33 ◦C range tested, the frequency decreases by an average of 0.25%.
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Figure 2.13: ST MB950 Primary System Clock

STMicroelectronics MB950. The �nal platform investigated was the ST MB950 [38]
which utilises an Arm Cortex-M3 STM32W micro-controller [37]. This platform is an example
of a modern embedded platform with processor and transceiver integrated and yields a sig-
ni�cantly increased processing power over the previously examined platforms. This platform
di�ers to the earlier investigated platforms as it utilises an external 24 MHz oscillator to drive
the internal clocks of the MCU. The same experiment was carried out using the ContikiOS
�rmware and test application, again with only platform-speci�c changes made to the �rmware.
The results are shown in Figure 2.13(a) and again appear to indicate a relationship between
clock period and temperature, however the clock variance for this platform is minimal. At
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Figure 2.14: Maxfor MTM-CM5000MSP RTC Clock

ambeient temperature of 24 ◦C the average clock period was measured as 2.397 µs and incrased
slightly to 2.398 µs at 72 ◦C, demonstrating change of just 1 ns over the tested temperature
range. Figure 2.13(a) re�ects how clock frequencies changed in regards to the ambient tem-
perature for the temperature range. For these clocks it would appear that the correlation
between clock frequency and temperature for this platform is no longer a linear relationship
but a form of quadratic relationship. However these clocks would appear to be more resilient
against temperature variance with an average frequency increase of just 0.06% increase over
the 68 ◦C tested temperature range.

Real-Time Clock

We examined the Maxfor MTM-CM5000MSP mote to evaluate the e�ects of temperature
changes on the RTC clock. The mote was programmed to raise a GPIO pin for 216 RTC
ticks, which is equivalent to two seconds, in a loop whose timing could then be measured by an
oscilloscope. The oscilloscope had a sampling resolution of 0.00008 us. The mote was heated
from room temperature to 70 ◦C similarly to the previous experiment by the use of a heat
lamp placed 10 cm above the mote and controlled by a wireless dimmer module, progressively
stepping through each of its 31 power output levels.
Figure 2.14(a) presents the result from our experiment. All nodes follow the same trend

where the clock was measured faster than the expected frequency at lower temperatures and
slower at higher temperature. At 22 ◦C the lowest measuring point, the nodes where found to
be an average of 70 µs fast whilst at the highest temperature of 66 ◦C the nodes where found
to be 190 µs slow. Node 13 had displayed the larger error being 140 µs fast at 22 ◦C and 340 us
slow at 66 ◦C. Node 3 reached the target period time of 2 seconds at 39 ◦C whilst node 13 at
41 ◦C, node 2 at 44 ◦C and node 12 at approximately 35 ◦C . Although there is a relationship
between temperature and the period this does not appear to be linear. Figure 2.14(b) presents
the same results as a frequency change in ppm from the base frequency measured at 25 ◦C.
Nodes 2, 3 and 12 exhibited a similar trend across all temperatures whilst node 13 had a more
extreme gradient. The values ranged from 20 ppm to -460 ppm.
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Other Platform Clocks

On the TI CC2420 transceiver, the radio used on the majority of research platforms including
the Tmote/Maxfor mote, the clock is sourced from an external 16 MHz crystal oscillator. To
accurately determine the operational frequency of these crystal oscillators, the radio can be
placed in a test mode where a divided version (8 MHz) of this clock can be outputted via
the CCA pin. Using an oscilloscope connected to this pin, the frequency of the crystal can
be measured. The Maxfor mote was con�gured in this way and was subjected to experiments
similar to the previous experiments. A heat lamp was used to vary the node temperature with
an oscilloscope connected to the CCA pin to measure how the radio clock is a�ected.
Figure 2.15 illustrates these �ndings. It can can be determined that the radio clock period

is stable at 125ns across all tested temperatures. Our conclusion from these results is that the
external clock source must compensate for temperature variations and therefore is una�ected
as the temperature is varied.

2.3.2 Clock Drift Models

In the previous sub-section two types of clock sources where identi�ed the RC and external
oscillator. Both of these sources where show to be a�ected by changes in temperature. The
following text will describe a model that approximates those observed e�ects.
RC-Clock Model. An RC-clock uses resistive and capacitive components whose pro�les

alter as temperature changes. These pro�le variations are linear and can be modelled using
Equation 2.13. The circuit is designed to have a frequency f0 close to the target frequency at
room temperature T0. A1 is a temperature coe�cient with unit ppm/◦C.

f(T )/f0 = A1 · (T − T0) (2.13)

We used this model to describe the measured clock changes dependent on the temperature
variance for both the Maxfor MTM-CM5000MSP and the Zoltertia Z1 (see Section 2.3.1). The
results are shown in Figure 2.16(a) and Figure 2.16(b). The determined temperature coe�cient
for each node is shown in Table 2.2.
It can be seen that the model is unique for each node. It is therefore not possible to determine

a generic model which would be applicable for all nodes even of the same type. The model pro-
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Figure 2.16: Model Fitting for RC Clocks

Node A1 [ppm/◦C]
Node 12 (Maxfor) -3756.5
Node 2 (Maxfor) -2150.6
Node 29 (Maxfor) -2324.4
Z1 1 (Z1) -101.56
Z1 2 (Z1) -67.555

Table 2.2: Determined RC temperature coe�cients for the evaluated Maxfor MTM-
CM5000MSP and Zoltertia Z1 nodes.

vides a linear approximation to the measured Maxfor and Z1 readings, however jitter is present
due to the limited accuracy of the experimental measurements. We consider the residual er-
rors for these experiment which is the measurable error or deviation of the actual data from
the statistically obtained estimate of the model. For these experiments there was an average
residual of 1919.44PPM for the Maxfor nodes, with a maximum of 5873PPM for node 29 at
61 ◦C, and an average residual of 462.86PPM with a maximum of 1265PPM for node 1 at 29 ◦C.

RT-Clock Model. An RT-clock oscillator circuit generally relies on a quartz crystal. The
crystal frequency depends on the shape of the quartz (its cut) which changes with tempera-
ture. Hence the cut of a quartz has signi�cant impact on the frequency changes dependant on
temperature changes.
Crystals are cut to resonate close to the target frequency at room temperature T0. Room

temperature is generally assumed to be T0 = 25◦ by crystal manufacturers. When temperature
either increases or decreases the oscillator frequency changes. A number of crystals use a cut
(For example, a CT, DT, SL, X, XY, BBT cuts) that can be described by a quadratic function
[21]. The frequency of the oscillator changes when temperature increases or decreases. Another
commonly used crystal cut is the AT cut which can be described using a cubic function [21].
The di�erent frequency temperature dependencies are schematically shown in Figure 2.17.
The outlined behaviour of di�erent crystal cuts can be modelled using Equation 2.14. f0
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(a) Quadratic Model Fit (b) Cubic Model Fit

Figure 2.17: Example of two di�erent model that describe Frequency change with Temperature
for RT Crystals of di�erent cuts. These �gures are found in [21]

is the frequency of the RT-clock at room temperature T0. F (T ) is the RT-clock frequency at
temperature T . A1 is a temperature coe�cient with unit ppm/◦C. A2 and A3 are temperature
coe�cients with unit ppm/◦C2 and ppm/◦C3.

f(T )/f0 = A1 · (T − T0) +A2 · (T − T0)2 +A3 · (T − T0)3 (2.14)

If it is known that the crystal has a cut that is described by a quadratic function the coe�cient
A3 can be set to zero. However, in practice it is not always possible to determine the crystal cut
type. Sensor node manufacturers often use di�erent crystals when producing di�erent batches
of nodes which may have di�erent cuts. Also, the available datasheets often do not provide this
level of detail.
To model the RT-clock of a node it is necessary to determine the temperature coe�cients A1

to A3. These coe�cients are node speci�c and it is not possible to use a once determined set of
coe�cients for a set of nodes. However, it is possible to determine the temperature coe�cients
before node deployment and to use them for clock adjustments later.
The model given in Equation 2.14 was used to describe the measured clock changes in response

to temperature variances of the Maxfor MTM-CM5000MSP RTC Clock (see Section 2.3.1). The
determined temperature coe�cients for each node are shown in Table 2.3. A comparison of
the measured frequency-temperature relationship and the derived model are shown in Fig-
ure 2.18(a). It is important to note that this model only examines the e�ects on the frequency
by temperature relative to the frequency observed at 25 ◦C. To see how the results vary around
the target frequency, a �xed o�set (clock skew at 25 ◦C) would need to be taken into account.
For instance, node 13 has a clock skew of 60 ppm at 25 ◦C and this should be added to observe
the drift in relation to the target frequency.
It can be seen in Figure 2.19 that the measured data �ts the model with an average residual

of 20.22PPM for all nodes across the measured temperature range, and a maximum residual of
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(a) Maxfor MTM-CM5000MSP RT-Clock Model
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Figure 2.18: Model Fitting for RT-Clocks
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Figure 2.19: Maxfor RTC model Residuals

79PPM for nodes 3 and 13 between the temperature ranges of 46 ◦C to 53 ◦C.
We also applied the model to the primary systems clock of the STMicroelectronics MB950 as

this primary system clock relies on a crystal. The measured frequency-temperature relationship
and the derived model is shown in Figure 2.18(b). It be seen that these measured results again
comply with the developed model however with a larger average residual of 129.44PPM and a
maximum residual of 500PPM for node 2 at 23 ◦C.

2.4 Impact of temperature on sensing

One important function of a sensor device is measuring aspects of the environment. Many
embedded devices measure properties such as temperature, sound and light which are used to
form decisions on actuation. It is important that the values measured from the sensors provide
the necessary accuracy to meet the application requirements. This makes the choice of the
actual sensor used on the platform speci�c to the application. Whilst the environment may
have an e�ect on such sensors, pro�ling all of these would be unrealistic.
Many of the environmental aspects sampled by sensors are analogue in nature and platforms

make use of analog-to-digital converters (ADC) to represent sensor readings in a usable numer-
ical format. Many MCU will contain ADC ports to which sensors can be connected to reduce
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Node A1 [ppm/◦C] A2 [ppm/◦C2] A3 [ppm/◦C3]
Node 12 1.2901 -0.39168 0.0071285
Node 13 1.1509 -0.23492 0.0017732
Node 2 0.93623 -0.12194 0.0012855
Node 3 1.6007 -0.27054 0.0041867

Table 2.3: Determined RT temperature coe�cients for the evaluated Maxfor MTM-
CM5000MSP nodes.
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Figure 2.20: Maxfor ADC Sampling with Varying Temperature

the need for additional external circuitry. The ADC ports which the MCU provides must be
capable to provide the necessary resolution and accuracy to support the application require-
ments. This section will look at how the accuracy of these ADC is e�ected by environment
conditions, speci�cally temperature.

2.4.1 Experimental Results

To investigate how the accuracy of an ADC port is e�ected by changes in temperature, two
Maxfor MTM-CM5000MSP motes were subjected to examinations. The ADC on the Maxfor
mote has a resolution of 12 bits giving a maximum value of 4096. A constant stable voltage of
2 V provided by an Agilent N6705B-M1 DC power analyser [1] was connected to an ADC port
which was sampled by the MCU. A Contiki-based application was created which continually
looped and outputted the raw values sampled from the ADC. The temperature of the mote was
increased by 20 ◦C using a heat lamp and dimmer module, described in previous experiments,
over a 15 minute period. At each minute the ADC value and temperature was recorded.
Figure 2.20 presents the results from this experiment. A 2 V input on the ADC should

produce a raw reading of 2730. Throughout all measured temperature ranges, the raw ADC
values for both nodes were recorded to be within 60 units, or 1.5%, of this expected value.
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The di�erence between the lowest and highest measurement for each node was 81 and 79 units,
which equates to 2% variance range. Both nodes appear to exhibit similar trends but with no
linear dependency between temperature and value.

2.4.2 Findings

Monitoring and reporting environmental aspects is the primary task of many embedded ap-
plications. It is important that the values measured are within accuracy bounds required by
the application. This will depend on both the chosen sensor and ADC port if the sensor is an
ADC. Only considering the ADC port, environmental temperature has been shown to e�ect the
accuracy by up to 1.5% over a 20 ◦C range above room temperature. Whilst much research has
gone into modelling temperature impact on crystals, with many documented models, there has
been little focus on temperature e�ects on ADC sampling with no accepted published models.
The results shown in Figure 2.20 suggest that the ADC values have a cubic relationship to
temperature however more data is required provide a model to accurately approximate this
relationship. Although we acknowledge that there is scope here to improve the accuracy of
sensing, by modeling how temperature variances a�ect sensing accuracy, the focus of the RE-
LYonIT project aims primarily to ensure reliable communiction in the face of environmental
conditions. The low impact of temperature variances against sensing should not have any im-
pact upon inter-node communication. Therefore, given the limited time-frame of this project,
the focus of the work will be to ensure reliable and deterministic communiction. This work will
be revisited should there be time later in this project.

2.5 Impact of temperature on energy supply and consumption

Many applications of embedded wireless systems operate on scares energy supplied from either
batteries or scavenged from the environment [32]. For such applications, changes in the energy
supply or the rate that energy is consumed can have signi�cant impacts on the lifetime of the
application. It is important that we understand how changes in the environment a�ect both of
these properties towards building more predictable and dependable platforms to support their
applications.

Energy From Batteries. In wireless sensor networks nodes are often powered using bat-
teries allowing applications to take advantage of the mobile nature of small embedded systems,
and operating from batteries often facilitates lower installation costs as dedicated power out-
lets do not have to be built into the infrastructure where nodes are to be installed. Batteries
are generally comprised of 3 main components, an anode and a cathode which are physically
separated and submerged within an electrolyte solution. The electrolyte provides a medium to
allow the �ow of charge between the anode and the cathode.
It is possible for embedded systems to acquire energy from its environment from sources

such as solar, wind, tidal etc. However when environmental energy sources are disrupted,
nodes must depend upon other sources of energy (usually batteries) [32] to provide them with
power. Energy harvesting therefore still relies upon the charging and discharging of batteries,
which over a time period, will reach the cycle life of the battery and they will no longer be able
to hold charge. For some battery technologies such as Ni-Cd batteries, the memory e�ect [34]
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can be observed in which batteries gradually reduce the ability to hold charge through repeated
charging after only partially discharging.
Battery pro�les are determined, in part, to their chemical component. Common battery

types include Nickel Cadmium (Ni-Cd), Nickel Metal-Hydride (NI-MH) and Lithium Ion, each
of which o�er di�erent capacitance and respond di�erently under di�erent discharge loads. As
batteries deplete, two e�ects may alter the characteristics of the battery pro�le.
Rate capacity e�ects [26] a�ect the reachability of sites at the cathode. During low discharge

rates the insoluble byproduct which a�ects sites of the cathode occur uniformly throughout the
entire body of the cathode. During periods of high discharge, the compound a�ects only sites
on the surface of the cathode, therefore rendering the inner sites of the material unreachable
and hence reducing the usable capacitate of the battery.
Recovery e�ects [26] can recover some of the capacitance of a battery during idle periods

where no current is drawn. During periods of large discharge, the rate of di�usion fails to keep
up with the rate of which ions are consumed at the cathode. This results in a buildup on ions
at the anode and a decrease of ions at the cathode. If the battery is allowed to idle for a period,
charge recovery at the cathode occurs to decrease the imbalance, and as a result recovers some
of the capacitance and lifespan of the battery.

Temperature E�ects On Batteries. As temperature varies during the lifespan of a
wireless sensor application, it has been shown in previous sections of this document that the
frequency of all forms of platform clocks are a�ected. As energy consumption of embedded sys-
tems is related to the speed of which its components operate (amongst other factors), the rate
of energy consumption and hence the discharge rate of the power supply of a node is likely to
vary as temperature changes. It is unclear not only how this will directly a�ect the capacitance
of a battery cell, but also how these variances will a�ect the rate capacity and recovery e�ects
of these cells.

Node Energy Pro�les. Knowing the exact rate that a platform consumes energy and
how it �uctuates is important when selecting its energy supply. The energy supply must be
capable of supporting the peak requirements of an application for a given platform, in addition
to providing su�cient capacity to satisfy the lifespan requirements of the application. The
failure to meet either of these requirements will lead to the platform being unable to support
the application.
In an energy optimised system which enables components when necessary and duty-cycles

them when not required, the rate of energy consumption will �uctuate as the application moves
between states (generally o�, sleeping, listening and sending). The peak energy rate as well as
the total energy required to meet the application runtime can be predicted by analysing the
power requirements.

2.5.1 Experimental Results

Pro�ling a platform will determine the necessary �gures to enable the peak energy consumption
rate, and total energy required, to be calculated. However, these measurements will only
be accurate if either the environment has no e�ect on energy consumption, or the deployed
environment is the same as the environment where the measurements took place. Therefore it
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is important to understand how the environment e�ects the energy consumption of a platform.
The following analysis will begin this investigation into how energy consumption of a platform
is e�ected by its environment, by looking at energy consumption with varying temperature.
In the previous sections, variation in temperature has been shown to e�ect a platforms in

numerous ways including timing, sensing and communication abilities, and it is likely that vari-
ations in temperature could a�ect the rate of energy consumption of a platform. To investigate
the energy consumption rate of a number of platforms, the Maxfor MTM-CM5000MSP [29],
Zolertia Z1 [50] and ST MB950 [38] were programmed to operate in a stable condition where
the processor interrupts were disabled and a simple application ran in a continual, uninter-
rupted loop, and with external components disabled where possible. The platforms were then
gradually heated by heat lamp used in previous experiements. Energy was supplied and the
consumption rate measured using a calibrated Agilent N6705B-M1 DC power analyser [1].
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Figure 2.21: Maxfor Energy Consumption vs Temperature

The �rst platform examined was the Maxfor MTM-CM5000MSP mote. Figure 2.21 presents
the results of this examination. Two nodes of this platform where tested and were found to
follow approximately the same trend where, as the node is heated, the power consumption falls.
At this point it is inconclusive if the relationship is linear as points on the plot become erratic.
The power drawn of both nodes fell by an average of 9% over the 25 ◦C temperature range
tested. This fall in energy consumption closely correlates to the 13% reduction in processor
clock rate that was observed for this platform.
A second platform examined was the Zolertia Z1. Figure 2.22 presents the �ndings of the

investigation on this platform. It shows the opposite trend seen on the Maxfor mote, with
energy consumption increasing with erratic behaviour at the both low and high temperatures
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extremes with a di�erence of 3% between the minimum and maximum.
A �nal platform examined was the ST MB950 and Figure 2.23 presents its results. Again,

similar to the Z1, the energy consumption appears to increase before sharply falling at 56 ◦C.
The overall di�erence in the rate of consumption between minimum and maximum is 4%.
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Figure 2.22: Zolertia Z1 Energy Consumption
vs Temperature
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vs Temperature

The results presented for each platform are very di�erent and little to no commonalities can
be seen. Creating a generic model to relate the energy consumption against temperature would
be impossible without further analysis of the platforms.

2.5.2 Findings

To accurately represent the pro�les of how power cells will discharge when providing power to
embedded systems, there are a wide variety of variables to be considered, some which could
be modeled such as the power pro�les of each mode of operation for a given node, and the
duration of time spent within these modes. However it is also unclear how the discharge e�ect
and recovery e�ects will a�ect battery capacitance of relatively low power devices such as
wireless sensor nodes.
According to battery manufacturer speci�cations [33] for the given temperature range of

+20 ◦C - +70 ◦C, battery capacitance ranges from 2.35 Ah to 2.4 Ah when a constant current
of 10 mA is being drawn, however, the capacitance between the upper and lower limits of the
operational conditions for this battery yields a total variance of around 40%.
It can be found that the only major factor which environmental conditions a�ects in regards

to power consumption/supply is the overall capacitance of a power source. The discharge
rate should not be a factor for these low power nodes, as they operate within manufacturer
speci�cations of the battery cells [33] for a modes of operation. It would be possible to model the
power consumption of a node for all states, and we could model the environment and estimate
how energy would be consumed over the lifespan of a WSN application, however we would not
be able to estimate how the varying discharge rates would a�ect the chemical capacitance of
batteries cell. It would therefore be beyond the scope of this project to attempt to model how
varying discharge rates a�ect the chemical pro�les of power cells.
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3 Temperature - Environmental Models

As shown in the previous Chapter, temperature has a signi�cant e�ect on the operation of
sensornet platforms. There is henceforth a need to identify and model the environment's
temperature pro�le. But what characteristics of the environmental temperature should we
model? What temperature dynamics are important with regards to the operation of WSAN?
In this Chapter, we describe a set of metrics that we believe are important in modelling the
environment. A thorough evaluation of these metrics is directly connected to the protocols to
be modelled and evaluated (this will be done in subsequent deliverables).

3.1 Probabilistic Analysis

One of the main goals of the environmental model is to help in estimating the e�ect of temper-
ature on sensornet platforms. Formally, if we let f(t) be the model of one of the four "pillars"
of a given platform (with t being a metric related to temperature), we would like a function
g : E → T that maps the environment E to a meaningful metric for temperature t. The goal
is hence to de�ne a general function g to capture the environment.
Letting g = pmf(S) be a function that outputs the probability mass function of a random

variable S, the e�ect of temperature can be captured by the composite function g ◦ f(s). For
example, for every temperature sample s in node i, we can apply the clock drift function de�ned
in the previous chapter f(s) and obtain the corresponding clock drift. Then, by applying g◦f(s)
we obtain the probability mass function of clock drifts. This type of information would help
the node in providing probabilistic guarantees, for example, by stating the likelihood that the
clock drifts will go above a certain threshold P (clock drift ≥ th) =

∑
t≥e g(e).

Considering the limited computing capabilities of nodes, the easiest way to implement the
above explained method is to obtain the pmf of the temperature (through periodic sampling),
and then, simply apply the function f to the domain of the pmf .
But not only the pmf of the temperature is important. When we evaluated the e�ect of

temperature on the received signal strength, we noted that it is also important to capture how
fast and abrupt the change in temperature can be. To obtain this type of information, we
need to capture the �rst derivative of the temperature curve. Since our data is discrete, we
cannot obtain a derivative, instead we calculate the slope of the curve at each point. Formally,
denoting S = {s0, s1, . . . , sn} as consecutive samples of temperature during a day (or days), we
obtain the slopes (�rst derivative) in the following way:

S′ = {s′i = si+1 − si,where i = 1, . . . , n} (3.1)

Then, by applying the pmf(.) function to S′ we get a probabilistic distribution of the rate of
change in temperature. Denoting f(∆T ) as the SNR function derived in the previous chapter
(to capture the e�ect of temperature in the signal strength), g ◦ f(s′) would denote the pmf of
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Figure 3.1: Temperature of 16 nodes during a day in an outdoor deployment. A temperature
of 0 ◦C indicates that no data was collected during that time.

the change in signal strength. This type of information can estimate how exposed a node is to
sudden changes in its link quality, P (∆RSS ≥ th) =

∑
th≥e g(e).

3.2 Network Pro�le

One of the most important observations about the impact of temperature is that nodes are
a�ected with di�erent intensities. That is, given the same environment and the same time,
the di�erence between the coldest and hottest nodes in the network can be of several tens of
degrees. In terms of the network's operation, this implies that depending on their temperature
pro�le, some nodes may be less able to transmit data, more likely to have clock drifts, more
likely to have erroneous readings, or more likely to use more energy. In essence, this means
that temperature enforces a high degree of heterogeneity into what would be otherwise a more
homogeneous network. It is hence important to capture the degree of heterogeneity enforced
by temperature.

Heterogenity. Figure 3.1 depicts the temperature pro�les of 16 nodes in the open �eld
experiment performed in Sweden (see Section 2.1.1 for more details). The x-axis represents
time and the y-axis represents the temperature of the nodes in ◦C. There is an important trend
to highlight. During the night (in summer, Sweden has short nights), the temperature does not
change much across nodes, i.e. temperature does not enforce heterogeneity. On the other hand,
during the day we observe a high variation. To capture the degree of heterogeneity caused by
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these variable trends, we use the Kullback-Leibler distance:

D(p||q) :=
∑
x∈X

p(x) log
p(x)

q(x)
, (3.2)

where p(x) and q(x) represent probability mass functions. Denoting pi(t) as the probability
mass function of the temperature observed at node i (collected during a day), we de�ne the
"temperature distance" between nodes i and j by:

D(ti↔j) =
D(pi||pj) +D(pi||pj)

2
(3.3)

The greater the distance between nodes, the greater the heterogeneity caused by temperature.
Denoting GN = (V,E) as the connectivity graph of network N , the heterogeneity imposed by
temperature on the graph N is given by:

DN =
∑

(i,j)∈E

D(ti↔j)

|E|
(3.4)

The higher DN , the higher the impact of temperature in the network. If, for example, we
would divide the temperature pro�le in Figure 3.1 into day and night, we would clearly observe
a much higher DN for the day than for the night. For di�erent environments, the DN metric
would provide a way to compare their relative exposure to temperature dynamics.

Global Max/Min Analysis. The heterogeneity metric derived above requires a very de-
tailed knowledge of the network. For each node, we require the distribution of temperature
and information about their neighbours. While in some scenarios the network may be able to
gather this information during the �rst day(s) of operation (and then adapt accordingly), in
other scenarios it may be necessary to give some minimum level of quality-of-service guaran-
tees from the beginning. For the latter type of scenarios, we can estimate the maximum and
minimum temperatures that any node would be exposed to, and then, plug in these values in
our models for signal strength, timing, sensing, and energy consumption to obtain upper and
lower bounds for the performance of the network.

3.3 Node Pro�le

In the previous section our focus was to get a macro view of the e�ect of temperature on the
network. But protocols usually depend heavily on the individual characteristic of each node.
For example, a routing or MAC protocol may prefer to avoid using "hot" nodes and use instead
more reliable "cold" nodes. It is therefore important to obtain metrics that characterize the
individual temperature characteristics of each node.

Hotness. Considering that the temperature observed by node i can be represented by a
random variable Ti with probability mass function pi(t), we can use the coe�cient of variation
to capture the hotness of a node. Denoting µi and σi as the mean and variance of Ti, and maxt
as the maximal operational temperature of a node, we denote the hotness of node i by:
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Figure 3.2: Periodic temperature pattern of a transmitter-receiver pair

Ci =
maxt−µi

σi
(3.5)

The higher Ci, the colder the node and the lower its variance, which implies that the higher
the Ci of a node, the more stable the node becomes (from the perspective of temperature).

Periodicity. Figure 3.2 depicts the temperature of two nodes for a few days. We can
observe that both nodes follow di�erent patterns (because they are exposed to sun light at
di�erent times during the day). This periodic behaviour can be important in the context of
delay-tolerant applications. For example, if a node has a strong periodic behaviour, a delay-
tolerant application could make the node sleep during periods of high temperature and wake it
up during periods of lower temperatures.
To capture the periodicity of a node we use the concept of cross correlation. Denoting fi and

gi as the time series of the temperature observed by node i at two di�erent days, we �rst need
to �lter out the high correlation caused by the changes between day and night. The time series
should include only the range between dawn (td) and sunset (ts). In the experiments performed
by Uppsala, td and ts can be obtained through the information coming from the light sensors.
The cross correlation between fi and gi is:

(fi ? gi)[n] :=

∞∑
m=−∞

f∗i [m]gi[n+m] (3.6)

Let us denote tbeg = tfd − (tgs − tgd) and tend = tfs + (tgs − tgd). These times mark the beginning
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and end of the cross-correlation calculation based on the times observed for dawn and sunset
in two di�erent days. For our purposes, we modify the basic cross-correlation de�nition to:

(fi ? gi)[n] =

tend∑
m=tbeg

fi[m]gi[n+m] (3.7)

Finally, the periodicity of node i is given by:

Pi = max
n∈[tbeg ,tend]

(fi ? gi)[n] (3.8)

The higher Pi, the more predictable the impact of temperature becomes, which in turn makes
it easier to adapt the performance of the network for periods where the impact of temperature
is minimized.

Rate of change. An important goal of the RELYonIT consortium is to design protocols that
are able to adapt to changes in the environment. To achieve this, it is important to guarantee
that the time taken by a particular process is less than the rate of change of the environment.
For example, if establishing the basic routing structure takes m minutes, it would be ideal to
know that, in m minutes, the changes in the environment will not be high enough to prevent
a process from reaching its steady state (since this could cause stability problems).
To capture the rate of change, we use the time series fi from node i in the following way:

Ri = max
t

(fi(t+ ∆t)− fi(t)) (3.9)

The lower Ri, the more stable the network is with regards to sudden changes in the envi-
ronmental temperature. The value for ∆t is determined by the protocol (or process) with the
longest transient state in the network stack (usually these are protocols related to the Data
Link Layer and above).

Local Max/Min Analysis. The metrics described thus far for individual nodes rely on
storing and accessing a relatively high amount of information (probability density functions
and time series). Even if the temperature samples are taken only every several tens of minutes,
some sensornet nodes may not have the resources to do this. For highly resource-constrained
nodes, we can obtain a node pro�le based on the max and min temperatures observed by that
node. This would allow a simpler analysis of upper and lower bounds (similarly to what was
explained for the Max/Min analysis in the Network Pro�le Section.)

3.4 Aggregating models

A desirable outcome of our modelling e�orts is not only to estimate the performance of the
network given some initial parameters, but also to identify the optimal (or near-optimal) pa-
rameters for a given deployment. Usually this type of problems can be solved via optimization
methods such as linear or convex programming. Within this scope, the key challenged faced
by RELYonIT is the large and complex nature of our platform models, which may increase the
di�culty in formulating the constrained optimization problem.
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To ameliorate this problem, we plan to utilize aggregation techniques to reduce the number
of individual models. Due to the unique temperature pro�le of each node, the corresponding
model will also be unique. We plan to cluster similar models into cluster models. For instance,
neighbouring nodes having a similar but not identical temperature pro�le, will decide in a
distributed manner to adopt a single cluster model. Neighbouring nodes can identify their
similarity by utilizing the Kullback-Leibler distance. This is an initial hypothesis which will be
further studied in the course of the project.
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4 Radio Interference

An important factor that can signi�cantly a�ect the performance of a wireless network is
the presence of radio interference. The latter is caused by �neighbouring devices operating
concurrently in the same frequency band, disturbing each other by emitting unwanted radio
frequency signals that play havoc with the desired ones� [4].
Interference is a particularly severe problem for wireless sensor networks, as the presence of

neighbouring devices transmitting at higher power largely increases the chances of hampering
their low-power communications. If a low-power wireless sensor network is used in safety-critical
scenarios such as health-care [14] and industrial control and automation systems [25], it needs
to guarantee high packet delivery rates and limited delay bounds. Unreliable connections, as
well as a reduced lifetime compared to the requirements, can not be tolerated.

In our study, we focus on external radio interference, i.e., the one caused by other appliances
and radio technologies operating in the same frequency range of the network of interest1, and
devise models that capture how typical interference patterns vary over time and how they a�ect
the operations of a given sensornet hardware platform.
In particular, we focus on the 2.4 GHz industrial, scienti�c and medical (ISM) band, a

worldwide-available unlicensed portion of the radio spectrum that is shared with other radio
technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.15.1 (Bluetooth), and that is potentially
threatened by the operations of ignition systems in engines or domestic appliances such as mi-
crowave ovens, cordless phones, baby monitors, game controllers, presenters, and video-capture
devices [10], [35], [49].

4.1 Platform Model

In order to devise models that capture how interference a�ects the operations of wireless sensor
networks, we start by answering the question: �what are the outcomes of radio interference on
a given sensor node?�.

Packet loss. The primary outcome of radio interference is typically an increase in the
packet loss rate, which may lead to high latencies and to an increase in the network tra�c due
to retransmissions. In the presence of a su�ciently strong interference signal, the receiver node
is no longer able to discriminate the good signal from the interfering one. The receiver node
can indeed reject any interference that is CRej weaker than the signal of interest, with CRej
being the so called co-channel rejection capability of the transceiver (with unit dB).

1Internal interference is instead the one generated by other wireless sensor nodes operating within the same
network.
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Figure 4.1: Co-channel rejection as speci�ed in the Texas Instruments CC2420 radio
datasheet [41].

Any interfering signal stronger than that may result, depending on its duration and strength,
in either a corrupted or a completely lost (i.e., not even detected) packet. The �rst case occurs
when radio interference corrupts only some of the bits in a frame, leading to cyclic redundancy
check (CRC) errors and a consequent dropped packet2. In the vast majority of the cases,
however, the radio does not even detect the presence of a frame.
We can hence build a simple model of packet loss due to interference as follows. Given a

pair (A,B) of wireless sensor nodes in which A transmits a train of n packets P1...Pn to B, a
generic interfering signal will a�ect the reception of a packet Pi at node B as follows:

Pi =

{
received if (Ii −Ri) ≤ CRej
not received if (Ii −Ri) > CRej

=

{
received if (Ri + CRej) ≥ Ii
not received if (Ri + CRej) < Ii

(4.1)

where Ri is the received signal strength of packet Pi at node B, Ii is the signal strength of
the interfering signal at node B during the reception of Pi, and CRej is the co-channel rejection
of the radio transceiver used by B.
IEEE 802.15.4 radios typically specify their co-channel rejection threshold in their datasheet

under �electrical speci�cations�. For example, Figure 4.1 shows the speci�cations of the co-
channel rejection from the datasheet of the Texas Instruments CC2420 radio, i.e., CRej = −3
dB for a wanted signal of −82 dBm. A similar value can be found for the CC2530 radio,
whereas the CC2400 datasheet speci�es a co-channel rejection of −10 dB.
Assuming for example R0 = −79 dBm and CRej = −3 dB, the presence of any interfering

signal stronger than I0 = −82 dBm will result in the (partial) loss of P0, which is equivalent of
having a minimum Signal to Interference plus Noise Ratio (SINR) of +3 dB. Figure 4.2 shows
the results of an experiment con�rming this. We used a pair of two Maxfor MTM-CM5000MSP
nodes exchanging packets at a rate of 128 packets/second and varied the temperature at the
transmitter, so to generate a di�erent output power (see Chapter 2) and added an interfering
node [10] in proximity. As we can see in the �gure, the interference Ii produced by the interferer

2 In the presence of robust encoding schemes or forward error correction techniques (FEC), it may still be
possible to reconstruct the packet [27], but with a signi�cant energy expenditure. Liang et al. [27] have
shown that in the presence of an IEEE 802.11b interferer, the ratio between corrupted packets and lost
packets is typically less than 1

5
, whereas it is slightly higher in the presence of an IEEE 802.11g interferer.
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Figure 4.2: Co-channel rejection threshold found experimentally on the CC2420 transceiver,
using Maxfor MTM-CM5000MSP nodes.

node is approximately −82 dBm. The weakest packets that can be received have Ri ≈ −79
dBm: below this value, packets are not received. The di�erence between Ri and Ii is hence
roughly 3 dB, which is as expected the inverse of the co-channel rejection ratio speci�ed by the
CC2420 datasheet.

Clear channel assessment. Interference may also a�ect the overall energy-e�ciency and
delay in the wireless network other than through loss of a packet. MAC protocols employing
carrier sense multiple access with collision avoidance (CSMA/CA) typically sense the channel
for ongoing transmissions and transmit packets only if the channel is found to be idle. The
channel sensing procedure is typically called clear channel assessment (CCA), and whenever it
detects the presence of an ongoing activity in the radio channel, the node defers or cancels the
transmission, which may lead either to an unbounded latency or to the loss of a packet.
The clear channel assessment operation is typically based on the measured received signal

strength compared against a programmable threshold TCCA (in dBm units). In the popular
Texas Instruments CC2420 platform, the CCA outcome can be read on a radio pin and the
threshold level can be programmed in steps of 1 dB by programming the RSSI.CCA_THR
register3.

3In the CC2420 radio, also a CCA hysteresis can be programmed in the MDMCTRL0.CCA_HYST control
bits. The default CCA threshold is -77 dBm.

Copyright © 2013 RELYonIT consortium: all rights reserved page 48



RELYonIT
Dependability for the Internet of Things

Report on
Environmental and Platform Models

Therefore, the success or failure of the transmission of a packet Pi in the presence of a
CSMA-CA protocol for a node can be simply modelled as:

Pi =

{
transmitted if I ≤ TCCA
not transmitted if I > TCCA

(4.2)

where I is the signal strength of the interfering signal and TCCA is the programmed CCA
threshold.

Please notice that both Equation 4.1 and 4.2 do not depend on the actual strength of the
interference signal, but only on whether it is above or below a given threshold. This can simplify
our environmental models of interference, as discussed in the subsequent section.

4.2 Environmental Model

Most existing approaches have modelled interference on a device basis, i.e., they have modelled
individual sources of interference. For example, Bianchi [7] has proposed an analytical model in
which the Distributed Coordination Function (DCF) mode of 802.11 is modelled as a discrete
Markov process where the back-o� and retransmission mechanisms are represented as discrete
states; whereas Taher et al. [40] have created an analytic model of the interference produced
by microwave oven signals and studied its e�cacy via simulation and experimental emulation.
In RELYonIT, we need to take a di�erent approach to construct environmental models of

radio interference. On the one hand, we do not have detailed knowledge of the deployment
area that would allow us to determine model parameters for a given interference source prior
deployment. On the other hand, the models need to be simple enough to be implemented
on resource-constrained sensor motes, since the latter should be able to carry out a runtime
assurance. In the remainder of this subsection, we describe a variety of interference models,
ranging from very simple to more sophisticated ones, and try to keep them as generic as possi-
ble. The �nal choice on which model will be used will depend on the protocol models that will
be considered in WP2.

4.2.1 Channel occupancy model

As we discussed in Section 4.1, to model the packet loss due to interference or the impact on
CSMA-CA, one does not need to know the actual strength of the interference signal, but instead
only whether it is above or below a given threshold. We therefore adopt the popular two-state
semi-Markov channel occupancy model, in which, at a given time instant, a channel is de�ned as
busy if any interfering signal is above a threshold RTHR and de�ned as idle otherwise [36]. The
advantage of this simple model is that it can be easily used on constrained sensor nodes that are
able to carry out energy detection, i.e., measure the received signal strength in absence of packet
transmissions (we will refer to this as RSSI noise �oor measurement [11] in the remainder of
this document). Denoting xi as the RSSI noise �oor sampled by a node at a given time instant,
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Figure 4.3: Example of interfering signal of strength Rmax as recorded by a Maxfor MTM-
CM5000MSP node performing a continuous RSSI noise �oor measurements at a
rate of 45.5 KHz. The shaded area shows the busy period of interference according
to the two-state semi-Markov channel occupancy model. RTHR is set to −56 dBm.

the occupancy of the channel can be expressed as:

Xi =

{
Busy (1) if xi > RTHR

Idle (0) if xi ≤ RTHR
(4.3)

with Xi being a binary number specifying a busy channel (1) or an idle channel (0), and RTHR
being a user-speci�ed threshold.

Figure 4.3 shows an example in which a Maxfor MTM-CM5000MSP node is performing con-
tinuous RSSI noise �oor measurements at a rate of 45.5 KHz. Denoting {x1, x2, . . . , xn} as
the sequence of consecutive RSSI noise �oor measurements sampled at a rate of R Hz, and
{X1, X2, . . . , Xn} as the binary sequence of channel occupancy states computed according to
Equation 4.3, one can derive an alternating sequence of idle and busy periods. The duration
of idle and busy periods can be computed by knowing how many consecutive RSSI noise �oor
values are above or below RTHR. In the example from Figure 4.3, 35 and 65 consecutive RSSI
noise �oor measurements taken at R = 45.5 KHz were above RTHR, hence the two busy periods
last 805 and 1495 µs, respectively.

The strength of the interference signals and the duration of idle and busy periods depend on
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Figure 4.4: RSSI values measured using o�-the-shelf wireless sensor nodes operating in the 2.4
GHz ISM band. Please notice the di�erent scale of the x-axis [11].

the interfering source and on the protocol parameters. For example, the interference patterns
generated by Wi-Fi transmissions depend on the number of active users and their activities, as
well as on the tra�c conditions in the backbone.
Wi-Fi transmissions are typically much stronger than sensornet transmissions, and can a�ect

several IEEE 802.15.4 channels at the same time. Hauer et al. [18], [19] have shown that with a
su�ciently high sampling rate, one can identify the short instants in which the radio medium is
idle due to the Inter-Frame Spaces (IFS) between 802.11 b/g packets. Figure 4.4(a) shows the
outcome of RSSI noise �oor measurements at a rate of 45.5 KHz in the presence of heavy Wi-Fi
interference caused by a �le transfer: it is indeed possible to identify RSSI values matching the
radio sensitivity threshold between consecutive Wi-Fi transmissions.
Figure 4.4(b) shows an example of the interference pattern caused by microwave ovens: high-

power noise (≈ 60 dBm) is emitted in the 2.4 GHz frequency band in a very periodic fashion.
The period mostly depends on the power grid frequency, but can also slightly vary depending
on the oven model. Literature reports a power cycle of roughly 20 ms (at 50 Hz) or 16 ms (at
60 Hz) with an active period of at most 50% of the power cycle [10], [23].

4.2.2 Node Models

We now derive computationally lightweight interference models that can be implemented on
resource-constrained sensor motes.
Bounds on the duration of idle and busy periods. The simplest way to model inter-

ference is based on the minimum duration of an idle period minidle and maximum duration
of a busy period maxbusy. Based on their knowledge, a CSMA-CA protocol could for exam-
ple verify whether it is possible to guarantee to �nd an idle slot long enough to contain a
packet of a given payload length, or to guarantee that a packet with a given payload can be
transmitted within a certain deadline. Figure 4.5 shows a worse-case scenario analysis for the
transmission of a packet using CSMA-CA. By knowing the time elapsed between two consecu-
tive CCA checks tCCA (assuming a constant back-o� time), and the time tpacket necessary to
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Figure 4.5: Worse-case scenario analysis for the transmission of a packet using CSMA-CA when
using an interference model based on the minimum duration of an idle periodminidle
and maximum duration of a busy period maxbusy.

send the packet P over-the-air, one can verify if the transmission occurs within a certain time
tdeadline. Assuming that the time elapsed between two consecutive CCA checks tCCA is 150µs,
minIDLE = 1750µs, and maxBUSY = 900µs, we obtain that a packet that needs to be trans-
mitted within tdeadline = 2500µs must take shorter than tpacket = 1450µs to be transmitted
over the air. The protocol can hence select a suitable payload length to guarantee the desired
performance.

Cumulative distribution function of idle and busy periods. In principle, the longer
the idle period, the higher the likelihood that a packet will be successfully received. For several
protocol parameters, such as the CCA back-o� time between consecutive busy channels, or the
payload length, it is often important to know the actual distribution of idle and busy periods.
Figure 4.6 shows an example of the cumulative distribution function (CDF)4 of idle and busy

periods measured by a Maxfor MTM-CM5000MSP node in the presence of a laptop continuously
downloading a �le from a nearby access point [11]. Please notice that to address the resource
limitation of sensor nodes, the CDF retrieved by the Maxfor nodes was discretized. In such a
scenario, the probability of having an idle period longer than 2 ms is smaller than 5%. This

4The cumulative distribution function of a real-valued random variable X is the function given by FX(x) =
P (X ≤ x), where the right-hand side represents the probability that the random variable X takes on a value
less than or equal to x.
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Figure 4.6: Cumulative distribution function (CDF) of idle and busy periods measured by a
Maxfor MTM-CM5000MSP node in the presence of a laptop continuously down-
loading a �le from a nearby access point [11].

is a hint for the protocol to use as short payloads as possible, and to avoid long CCA back-o�
times. On the contrary, an environment in which interference occurs in long bursts with large
idle periods would probably call for long CCA back-o� times in order to minimize the time in
which the radio is on.
Denoting pi(i) as the probability density function of the idle periods formed by the interfer-

ence pattern, a protocol could for example select the optimal payload length by computing the
probability of encountering an idle period of length i:

pidle_period(i) =
ipi(i)∑∞
i=1 ipi(i)

(4.4)

Similarly, denoting pb(i) as the probability density function of the busy periods formed by
the interference pattern, a protocol could for example select the optimal back-o� time for clear
channel assessment by knowing the probability of selecting a busy period of length i:

pbusy_period(i) =
ipb(i)∑∞
i=1 ipb(i)

(4.5)

Modelling the interplay between idle and busy periods with a conditional CDF.
The knowledge of the cumulative distribution function of idle and busy periods is however not
enough in case a protocol needs to exchange long sequences of packets, as in this case also the
interplay between idle and busy periods needs to be known. Imagine a sensor node A that
needs to exchange a sequence of messages with another node B. Node A sends a message P
of duration tP to node B that replies with an acknowledgement (ACK) message of duration
tACK . In the presence of a cumulative distribution function such as the one in Figure 4.6(a),
one would almost have a zero-probability of obtaining an idle slot long enough to contain both
tP and tACK . However, B requires a non-negligible time tload to receive and extract P , analyse
its validity, process its information, as well as to prepare the response frame and load it into the
radio bu�er. Hence, the presence of a busy period tbusy shorter than tload after the transmission
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of P would not have any impact on the reception of the ACK and the successful completion of
the exchange.
Denoting pidle(i) as the probability of encountering an idle period of length i computed using

Equation 4.4 and pbusy(j < tload | i) as the probability of obtaining a busy period j shorter
then tload after an idle period of length i, the probability of successfully completing the exchange
pex is:

pex =pidle(i > tP + tload + tACK)+tP+tload−∆t∑
i=tP

pidle(i)× pbusy(tP + tload − i | prev_idle = i)

×
pidle(i > tACK | prev_busy = tP + tload − i) (4.6)

Node A can hence exploit the knowledge of the interplay between idle and busy periods to
provide performance guarantees (see [11] for further details).

4.2.3 Network Model

The models introduced in this section are typically computed on each node. External inter-
ference, however, usually a�ects a group of nodes in close proximity to each other in a similar
fashion [20]. In order to avoid that every node in the network uses a di�erent model and to
minimize energy consumption, it would be important to select one model that is representative
for a group of nodes or even for the whole network. Interference-aware protocols, for example,
often need to adjust their parameters based on the interference measured by a group of nodes
(e.g., a parent-children subset [20], [24]) and therefore need to select the most representative
distribution, for example when selecting the most suitable channel [30].
Hence, we investigate the possibility of combining the measurements from a group of nodes

and select an aggregate model that is representative for all of them. We �rst retrieve exper-
imentally the duration of idle and busy periods among several Maxfor MTM-CM5000MSP
nodes deployed inside a 56 m2 o�ce. The o�ce is located in proximity of Wi-Fi access points
and therefore rich of external interference, and the exact location of each node is shown in
Figure 4.7(a). Each mote computes the distribution of idle and busy periods after collecting 50
million samples of RSSI noise �oor values for a speci�c RTHR threshold. Figure 4.7(b) shows
the CDF of busy periods measured on each node during night time with RTHR = −89 dBm:
we can observe that external interference a�ects indeed nodes that are in proximity of each
other in a similar way. In Figure 4.7(b) we can recognize two main trends highlighted in red
and purple, and the corresponding nodes are highlighted using the same colours. As we can
observe, they are indeed physically close to each other. In such scenario, the nodes belonging to
red and purple can decide in a distributed manner to adopt a single cluster model, for example
by identifying their similarity using the Kullback-Leibler distance as discussed in Chapter 3
and selecting the most representative distribution within a group5. This is an initial hypothesis
which will be further studied in the course of the project.
5A cluster head can potentially also compute bounds within the aggregated CDF.
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Figure 4.7: Cumulative distribution function (CDF) of busy periods among several Maxfor
MTM-CM5000MSP nodes located inside a 56 m2 o�ce. The colors identify the
nodes in which similar interference patterns were measured.
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5 Conclusions

The need to develop environmental and platform models arises from the fact that the perfor-
mance of wireless sensor and actuator networks depends fundamentally on these two elements.
Our e�orts center around two environmental characteristics (temperature and interference) and
four platform pillars (communication, timing, sensing, and energy consumption).
The topic of temperature has not received much attention from the research community,

but in this report we have shown that it has a signi�cant impact on the four pillars identi�ed
for the hardware platform. During the �rst eight months of work, most of our e�orts have
focused on temperature e�ects. On the other hand, the topic of interference has received
signi�cant attention from the community. For interference, our goal is to bridge the gap between
analytical studies that rely on some unrealistic assumptions, and empirical evaluations that
focus on speci�c platforms. Our general goal for the temperature and interference e�ects is to
develop simple and generic models that are platform independent. These models will not only
help in estimating the performance of sensornet deployments according to some initial set of
parameters, but also in identifying optimal operating points.
As for the next steps, we have three main directions. First, to derive platform models for

sensing and energy consumption. Second, to conclude the modelling for interference (for both,
the environment and platforms). And third, to integrate the protocol models into this initial
framework to �ne-tune the models presented in this deliverable. It is also important to mention
that our modelling e�orts will be central to the tasks related to adjusting the parameters of
the network in real-time.
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