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Abstract This document presents (i) the generic RELYonIT runtime assurance framework and (ii)
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D-1.1. The generic runtime assurance framework is composed of three elements: violation detec-
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these two environmental factors individually and examine lightweight detection techniques which can
infer potential violations from existing information held in the system. We then look at veri�cation
methods showing how to compare data collected at run-time to instantiate the models devised in
Deliverable D-1.1 with pre-deployment models used to parametrize communication protocols. We
�nally examine reporting and remediation and show how alarms can be triggered as soon as a model
violation occurs as well as how data recorded during veri�cation can be reported to aid remediation.
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Executive Summary

Predicting and optimising the performance of systems IoT systems to a given environment
enables performance guarantees to be o�ered to the application. However, these predictions
assume that the model of the environment is correct for the lifetime of the application.
In many situations the environment may change over time, and these changes may invalidate

the environmental model and any predictions or optimisations that are based upon it. It is
the purpose of Runtime Assurance to monitor the performance of the system and to con�rm
the environmental models when performance degradation occurs and to raise alarms when the
environmental model is no longer representative.
Towards realising a runtime assurance system we have created a generic runtime assurance

framework composed of three elements; violation detection, violation veri�cation, and �nally
reporting and remediation. We examine the use of this framework with two environmental
models: temperature and radio interference.
For each of these two aspects we have examined lightweight detection techniques which

can infer potential violations from existing information held in the system, and methods for
veri�cation describing how data can be collected at run-time to instantiate models derived in
Deliverable D-1.1 and compare with pre-deployment model instances. Finally, reporting and
remediation is discussed showing how alarms can be triggered on model violation, and how
data recorded during veri�cation can be reported to aid remediation.
Runtime assurance is a small integral component of the RELYonIT system. It builds up

on models and tools for parameterisation developed in the earlier tasks of WP1. Close links
with Protocol Models (WP2) and their parameterisation is required to gain the relevant under-
standing of how protocols are a�ected by the environmental e�ects so the correct performance
metrics can be monitored for model violation detection. Runtime assurance systems must also
collect and provide the relevant information to Runtime Adaptation (WP3) and potentially to
the Protocol Selection and Parameterisation stages in situations where environmental changes
are signi�cant.
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1 Introduction

In Deliverable D-1.1 [10] we have devised environmental and platform models allowing us
to capture and predict how speci�c environmental conditions vary with time and how their
variation a�ects the platforms that support IoT applications. This work was extended in
Deliverable D-1.2 [5], where we developed tools to capture application-speci�c environmental
data prior deployment to parametrise these models. These models and tools can be used in
conjunction with WP2 (Environment-Aware Protocols) to predict the performance of wireless
sensor networks protocols [1, 6] as well as with work undertaken in WP3 (Con�guration and
Runtime Support for Dependable Applications) to automatically obtain an optimal protocol
con�guration.
Predicting and optimising the performance of a sensor network in a given environment enables

applications to satisfy certain performance guarantees. However, these predictions assume that
the model of the environment is correct. In some scenarios the environment may change, e.g.,
when a new Wi-Fi access point is installed inside a building, or in case sensor nodes are deployed
in an area exposed to extraordinary climate conditions. Such a change may invalidate the model
and any predictions or optimisation based thereon.
It would be bene�cial to monitor the environment during runtime to gain knowledge as to

when the environment changes such that remediation can take place prior to the application
being adversely e�ected. Techniques for runtime assurance are needed to monitor for changes
in an environment that violate the model parameterised pre-deployment and to raise an alarm.
This document examines such techniques in detail.
The rest of the document is structured as follows. Chapter 2 provides a description of the

RELYonIT runtime assurance framework and of its three building blocks: detection, veri�ca-
tion, and reporting. Chapter 3 presents an instance of this framework for the temperature
models derived in D-1.1 [10] and shows a system that veri�es adherence to the temperature
environmental model captured before deployment. Chapter 4 focuses on radio interference; �rst
examining a number of data sources that can be used to infer violations before then looking at
veri�cation; comprised of model instantiation and model comparison stages. The �nal chapter
presents our conclusions for this deliverable.
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2 Framework

The responsibilities of the runtime assurance component are threefold:

1. Monitoring aspects of systems performance for indications of possible volitions of the
environmental model;

2. Verifying that model violations exist;

3. Reporting violations with data collected to be used for remediation.

The component is intended to operate on wireless sensor nodes at runtime, and should
therefore share system resources with the application.
As there are potential problems with the inherent non-deterministic run length of some of

these operations, we minimise any adverse e�ect on the application through cooperating closely
with the application. To this end, we leave it to the application to schedule operations during
runtime between its own tasks such that any impact is mitigated or minimised to the greatest
degree.
Facilitating close cooperation between the application and the runtime assurance component

requires a well-de�ned framework and set of interfaces. In this section we will document the
framework devised during the project, and the three subcomponents of which it is composed,
namely; detection, veri�cation and reporting.

Application

ReportingDetection Veri�cation

Runtime Assurance

Figure 2.1: Framework Diagram

2.1 Violation Detection

The �rst, and most frequently used element of the runtime assurance framework is the violation
detection subcomponent. The detection module will run alongside the application and regularly
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checks for signs that the environmental model has been violated.
As embedded systems are often resource constrained, it is important to ensure that the

method used for violation detection is lightweight as to limit any potentially adverse e�ect on
the application. Whilst the amount of RAM and ROM the detection module requires should
be limited, it is the processing requirements that are actively constrained. Determining exactly
when this component is scheduled is highly application dependant, and the amount of processor
time (the run-time for the component) should be carefully restricted to minimise the possibility
of a�ecting the application's own scheduled operations.
The detection module could be scheduled to run periodically based on a timer, however the

e�ect on the application of doing so would be di�cult to predict. Taking the example of a
simple minimum/maximum temperature model, the task of taking regular measurements of
the ambient temperature is quite a lightweight, fast task, and could easily be worked in to the
runtime of the application at any point. Interference modelling, on the other hand, requires
high frequency sampling of the channel, along with real-time processing, both of which are
time consuming and very resource-heavy. Performing such a heavy-weight process alongside the
application at runtime would detrimentally a�ect the performance of the application. A safer
policy is to allow the application to schedule the detection process around it's own operations.
One simple approach to test if a violation may have occurred is to execute the tools developed

in the previous deliverable (D1.2) during runtime. Data could be collected to create environ-
mental models which could then be compared against the model collected prior to runtime, and
any signi�cant di�erences would signify a violation has occurred. This approach would depend
on the data requirements and the processing overheads of re-running the environmental model
generation code.
Another approach is to infer a violation has occurred by measuring other properties of the

system. In WP2 much work has studied how changes in aspects of the environment may a�ect
certain system performance metrics. A number of aspects of the system may degrade if the
environmental model is violated - the energy consumption of the device may increase with
radio interference due to additional idle listening, for example. Communication metrics may
also change with the environment such as a drop in signal strength with temperature or a drop
in PRR with increased interference - changes in either of which could signal to the runtime
assurance component that the environmental model may have been violated.
The advantage of evaluating these e�ects is that often it would require minimal processing

and memory overheads as many of these metrics are recorded by the system during normal op-
erations, although this approach would not o�er the highest detection accuracy as performance
may also be a�ected by non-environmental in�uences.

2.1.1 Interface

To support the functionality outlined above, the detection module interface provides a single
function outlined below.

1 int relyonit_rta_detection(void *) ;

The function is intended to be invoked periodically by the application to check for potential
environmental model violation. The function will do no heavy processing at this stage and will
return control to the application in shortest possible time.

Copyright © 2015 RELYonIT consortium: all rights reserved page 8
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Figure 2.2: The logical model for the relyonit_rta_detection function, error states are omitted
for clarity

The application should call this function at a su�cient frequency to detect changes and
to enable rapid adaptation. The minimal frequency will depend on the environmental aspect
being monitored and how rapid that aspect can change. As well as periodically, the application
should also call the function at points where the performance of the system is suspected to be
degraded such as after a run of failed packet transmissions.
The function will return one of three di�erent codes; verification_needed, which will be

represented by a 1, verification_not_needed, which will be represented by a 0, and error
which will be represented by a −1, as shown in Figure 2.2. In the event that the function
returns verification_needed, the application should invoke the veri�cation function at its
earliest convenience.

2.2 Veri�cation

The second subcomponent of the runtime assurance framework is veri�cation. This module
is executed by the application after the detection module detects a potential environmental
model violation (as indicated by a verification_needed result from the detection module).
The module is responsible for verifying that a violation has actually occurred and then to
notify the reporting component to signal the violation.
Veri�cation of a violation will often involve re-running the environmental data capture tool for

the speci�c environmental aspect derived in D1.2. The data recorded will be used to instantiate
a real-time instance of the model that will be compared to the one captured prior to application
deployment. In the event that the deviation between the two models is above a model-de�ned
threshold then a violation is considered to have occurred.
The processing and memory overheads of model violation veri�cation will depend on the

model being veri�ed, although are generally expected to be signi�cantly higher than that of the
detection subcomponent for non-trivial models. Again taking the temperature model example,
the minimum and maximum temperature observed over a time period may be su�cient and
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would require limited resources, whereas for interference modelling, the model in the form of a
PDF of the observed interference may need to be captured, which is far more resource intensive.
As the resource requirements for veri�cation can vary anywhere from minor to extreme,

scheduling when the veri�cation algorithm should run is under the control of the application.
The application will be noti�ed through the result of the detection module documented previ-
ously, and if further veri�cation is required, the application can then �nalise any priority tasks
before calling this component.

2.2.1 Interface

To support the functionality of the veri�cation module outlined above, the module interface
provides a single function outlined below.

1 int relyonit_rta_verification(void *) ;

Invoked by the application after the detection module has signalled the presence of a potential
violation, the function attempts to re-create the model with new data and compare it to the
current model, and unlike the detection function which simply attempted to infer a violation by
using information present in the system, the veri�cation system will actually check a violation
has occurred.
Because generating a model is both model-speci�c and likely to be computationally and

resource-expensive, no predictions can be made for the run-time of this function. Therefore,
the application should, before invoking the veri�cation function, �rst complete any high priority
tasks.
Although no guarantees on required processing time are de�ned in the interface speci�cation,

some indication of the expected runtime for a given model should be given the application
developer.
The function will return three di�erent codes; violation, which will be represented by a 1,

no_violation, which will be represented by a 0 and error, which will be represented by a −1,
all as shown in Figure 2.3. The return states of violation and no_violation are purely to
inform the host application of the result, and can be used to adjust application speci�c state,
if required.
On the detection of a violation, before returning the state to the application the violation

function will signal to the reporting system that a violation has occurred. The reporting
mechanism is discussed in the next section.
Depending on the application, it may be possible for the process to continue during a vio-

lated state in a best-e�ort capacity until remediation can take place. The application should
continue calling the runtime detection and veri�cation as per normal operations, to enable the
runtime assurance processes to inform the application that the state has returned to normal,
or alternatively to allow further information to be gathered and reported during an ongoing
violation.

2.3 Reporting and Remediation

The reporting and remediation module of the runtime assurance framework is responsible for
both signalling an alarm, and initiating any remediation operations when a violation of the

Copyright © 2015 RELYonIT consortium: all rights reserved page 10
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Figure 2.3: The logical model for the relyonit_rta_verification function, error states are
omitted for clarity

environmental model has occurred.
The implementation to signal the event to a controller is left up to the implementer, but

may, for example take the form of a header bit �ag piggy-backed in existing application packets
sent to the sink. Alternatively, an entirely separate message may be sent to signal the event.
When bene�cial, the module should also transmit information gathered by the veri�cation
system that can be used for remediation. Information such as the current temperature or the
generated interference model instance could also be forwarded to aid in remediating the current
performance issues, and may provide hints to Runtime adaptation of Protocol Parameters (Task
3.3) on how to adapt the system. In situations where runtime adaptation is not possible the
information may be used as input to rerun Protocol Selection and Parametrization (Task 3.2).
The module will be directly interfaced with the veri�cation system and as such has no user

callable functions.

2.4 Case Study

The implementation of runtime assurance will be dependent on the environmental model that
runtime assurance is validating. Each implementation will apply the framework de�ned in the
previous sections. In this section will examine a case study to show the framework in action
and demonstrate runtime assurance for the Car Parking scenario used for the �nal integrated
demo. The demonstrator will focus on energy consumption of the radio which is heavily a�ected
by radio interference. As such runtime assurance in this case must monitor the interference
environmental model. A more detailed examination of runtime assurance for inference and the
e�ect of interference on energy is given in Section 4.

Copyright © 2015 RELYonIT consortium: all rights reserved page 11
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The demonstrator will focus on idle energy consumption. The radio idle energy model de�ned
in D2.2/2.3 will be used to de�ne the expected energy consumption of the device. This model
employs a simpli�ed version of the interference model using the channel busy-to-idle ratio rather
than the complete idle and busy PDF 's. Runtime assurance must ensure the actual interference
observed by the device does not deviate signi�cantly from this model and if so an alarm must
be raised.

2.4.1 Detection

To infer if interference has changed, this function checks if the energy consumption of the device
has deviated from that predicted by the model. ContikiOS by default records the on-time, and
thus, energy consumption of various components of the system, and these statistics can be
accessed by the detection subcomponent for comparison. For our purposes, the on-time of the
radio receiver is monitored and compared with the predicted value that is generated at compile
time and stored on the device. If a signi�cant deviation (greater than 5%) is seen, we infer
that a violation of the interference model has occurred and signal that veri�cation is required
by means of return code of verification_needed.
The function is called by the application every minute via the use of a simple timer (in

our speci�c case, Contiki's etimer). When the etimer expires the application will �rst �nish
any priority tasks before calling the detection function. A minute was selected as this provided
enough time that the e�ects of small �uctuations in interference are averaged and less detection
checks result in verification_needed.
The function meets the goal of being as lightweight as possible, and is implemented as a

simple test comparing two integers, namely the predicted radio on-time and then actual, and
returns an appropriate integer status code. In our example the function is executed once per
minute, although there are no side e�ects to calling it at a higher frequency.

2.4.2 Veri�cation

The veri�cation function is executed by the application after the detection module has signalled
veri�cation being needed. The application should �rst perform any tasks of high priority
before calling the veri�cation function to prevent scheduling con�icts with the veri�cation
subcomponent. The function itself takes approximately one minute to execute.
The implementation of the veri�cation module borrows from that of the interference data

collection tool outline in D1.2. The function executes for one minute, sampling RSSI at a high
frequency of 30Khz. If the observed RSSI sample is above the threshold of -77 dbm then a
busy counter is incremented otherwise an idle counter is incremented. The sampling is done in
real-time with no breaks and thus requires the full use of the processor with interrupts disabled.
At the end of the RSSI sampling period, the channel state, i.e., the percentage that the channel
is busy is calculated and compared with the value recorded prior to deployment stored on the
device at compile time. If the value deviates by more than 10 percentage points then a violation
has occurred.
When a violation has occurred the veri�cation function will call the reporting function pro-

viding the measured channel state and then return violation to the application signifying a
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violation has occurred. If no violation is detected and no reporting is necessary, a return value
of no_violation is given to the application signifying no violation has actually occurred.
When the system is in a violation state, the demo application will attempt to continue to

operate as normal whilst any remediation action is taking place. The detection subcomponent
will continue to be executed once a minute which will re-trigger the veri�cation process whilst
the violation continues to be present.

2.4.3 Reporting and Remediation

When a violation of the model is veri�ed by the veri�cation system, the reporting function
is invoked. The function will generate a message that will be sent via the RIME stack to
the control system. The packet will contain the ID of the system along with a �ag signifying
that a model violation has occurred. No additional reliable mechanisms on top the existing
RIME mechanism are implemented to ensure the packet reaches the control system, and as the
application will rerun veri�cation every minute during a violated state, the violation report will
continue to be generated and transmitted until remediation is performed.
To aid the remediation system in reevaluating the interference model, the channel state as

evaluated by the veri�cation process is added to the data in this message.
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3 Temperature

This section presents an instance of the runtime assurance framework for the temperature model
derived in WP1 [5, 10]. Before describing the implementation of the three elements composing
our framework (violation detection, violation veri�cation, and reporting/remediation), we �rst
shortly summarize how the temperature model was conceived and its exploitation in the newly
designed environment-aware protocols.

3.1 Parameters of Interest

In deliverable D-1.1 [10], we have captured the behaviour of the environment E in terms of
four thermal properties: hotness, periodicity, change of rate, and maximum and minimum
temperature range. As we argued in [3, 11], the most important of these properties are the
maximum and minimum temperatures recorded on each node i (Equation 3.1), as they
bound the network performance. Indeed, denoting fi as the time series of the temperature
observed by a node i, the knowledge of the maximum and minimum temperature at each node:

(maxi,mini) = (max{fi},min{fi}) (3.1)

can be used to predict the worse-case attenuation of received signal strength that a wireless
link experiences in the presence of temperature �uctuations. This information, together with
the platform model devised in WP1 capturing the signal strength attenuation for a speci�c
hardware platform [2, 10], can be used by every sensor node to predict the expected attenuation
of the signal-to-noise ratio (SNR) and derive the parameters of our newly designed temperature-
aware MAC protocol [11, 12].
Such a prediction, however, is only valid if the values used to compute Equation 3.1 faithfully

represent the characteristics of the environment surrounding the nodes. In case the character-
istics of the time series collected to derive the environmental model used to parametrize a
given communication protocol di�er from the temperature �uctuations actually occurring at
the deployment location, the environmental model becomes invalid. Such violation needs to be
reported to the system, and a remedation action needs to be taken (e.g., re-parametrization of
the communication protocol).

3.2 Violation Detection and Veri�cation

Each sensor node keeps track of the maximum and minimum temperatures recorded prior
deployment. To detect a violation of the environmental model, these values need to be compared
against the current on-board1 temperature. This requires each sensor node to periodically
1Notice that the on-board temperature of sensor nodes is often higher than air temperature measured by
traditional weather stations, as wireless sensor nodes are exposed to direct sunlight or are enclosed into
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monitor this value by using a dedicated on-board temperature sensor2 and by comparing this
value with the maximum and minimum temperature computed prior deployment.

Frequency. The on-board temperature of sensor nodes typically varies slowly over time (a
variation of 1◦C cannot occur at time-scales of micro- or milliseconds), and therefore the vio-
lation detection feature can be implemented as a low-priority task executing every P seconds.
To derive P , we use the maximum rate of change on a node i captured prior deployment as

explained in [10] by identifying the steepest slope of the temperature series fi:

Ri = max
t

(fi(t+ ∆t)− fi(t)) (3.2)

We have observed in common outdoor deployments that the highest rate of change typically
occurs when a node receives the �rst sun-rays at the beginning of the day. In such scenarios, a
node can experience an increase in its on-board temperature up to Ri = 2◦C/minute [4]. The
knowledge of Ri together with the e�ect of temperature on transmitted and received power of
the platform of interest (α and β, respectively, see [10]) allows us to compute the maximum
variation in dB of the SNR on a time-frame P .
For example, when two Maxfor MTMCM5000MSP sensor nodes (TelosB replicas with α =

0.08 and β = 0.08 [3]) experience an increase of temperature at the beginning of the day of Ri

= 2◦C/minute, one can expect an attenuation of the signal up to 0.32 dB within one minute.
Selecting P = 20 seconds will therefore allow us to make sure that any violation of the model
will be detected before the SNR can be in�uenced by 0.1 dB, a value su�ciently low not to
harm packet reception.

Integrity of logs. Measuring the on-board temperature periodically every P seconds also gives
the system the possibility to prevent corruption of any log information sent over the USB back-
channel. During our experiments, we have indeed observed that common USB serial connections
used for data logging and node programming are unable to cope with very fast temperature
�uctuations, as they often result in de-synchronization of the USB sender and receiver. In the
presence of such variations, the USB serial port looses synchronization with the sensor node and
the characters forwarded to the USB back-channel become temporarily unreadable, as shown
in Fig. 3.1. Since standard wireless sensor nodes do not handle this issue autonomously, a node
has the possibility to re-initializes the USB port if the temperature between two consecutive
temperature readings changed by more than TEMPDCOSY NCH

◦C.

Veri�cation mode. Data retrieved from inexpensive sensors is known to be often brittle, i.e.,
a sensor reading generating a violation may be the result of an outlier or of a fault in the sensing
process. Therefore, as soon as a violation of the model is detected, we repeat the reading K = 3
consecutive times and carry out a majority voting. If the model has actually been violated, the
system enters the reporting and remediation mode.

transparent packaging absorbing infra-red radiation [4].
2The vast majority of wireless sensor nodes embed a dedicated on-board temperature sensor. If the latter is
not available, several low-power micro-controllers such as the MSP430 o�er the possibility to obtain a rough
estimate of the on-board temperature from a built-in temperature sensor using a speci�c input of the ADC.
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Figure 3.1: Unreadable serial output in the presence of sudden thermal variations.

3.3 Reporting and Remediation

Once a violation is detected, it is reported to the central system such that remediative actions
can take place.
As will be later explained in Section 4.4, there are two available options: the runtime as-

surance alarms can either be sent as an explicit message, or piggybacked on existing commu-
nications (an optimal solution in high throughput applications where packets are frequently
generated).
Upon receiving the alarm messages, each node can either try to compensate for the viola-

tion by adapting runtime parameters (using the Runtime Adaptation of Protocol Parameters
module) or, if the change in environment is quite signi�cant, it will re-compute the selection of
protocols and their parametrization.

Implementation. As part of the complete implementation of runtime assurance for the 2nd
integrated demo, we implemented reporting as an explicit message. However, as data retrieved
from inexpensive sensors is known to be often brittle (i.e., a sensor reading generating a violation
may be the result of an outlier or of a fault in the sensing process), nodes do not rely on single
sensed values. Instead, as soon as a violation of the model is detected, each node repeats
the reading K = 3 consecutive times and carries out a majority voting: if the model has
actually been violated, an explicit message is sent so that the system enters the reporting and
remediation mode. The implementation is in detail and evaluated as part of the 2nd integrated
demo deliverable (D4.4.).
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4 Radio Interference

In this section we will present an instance of runtime assurance for radio interference. Interfer-
ence measurement consideration will be examined before looking at each of the elements of the
runtime assurance framework.

4.1 Measurement Considerations

As described in Deliverable D-1.1 [10], the radio interference model is formed by computing
a CDF of the idle and busy periods over time. An idle period is a period where there is no
interference or where interference is below a predetermined threshold, whereas a busy period
is one where interference is contiguously above the threshold. The threshold is de�ned as the
maximum value where interference has no e�ect on a transmission, and normally, this CCA
threshold is set to -77 dBm.
Continuous sampling of the channel over a speci�c time period is required to gather the

required data for the model. If the sampling is too slow or if there are spaces in sample
recordings, periods of interference will be missed. To maximise the accuracy of the model we
chose a high rate of contiguous scanning, recording one sample every radio symbol period,
which equates to approximately 30 kHz.
As described in Deliverable D-1.2 [5], for a system with the resources of a typical embedded

system such as a t-mote [7, 8], to scan at this rate, the clock must be set to maximum rate,
with interrupts disabled to provide the required performance, and the system cannot execute
any other task during sampling or spaces in sampling will occur.
We suggested a scanning period of 5 minutes for each individual model, for reasons as dis-

cussed in Deliverable D-1.2 [5]. This value was selected after experimental investigation and
was adequate to collect a representative view of the channel.
Due to the high system requirements during this measurement and sampling phase, sampling

on a node at runtime should be avoided to reduce any adverse e�ects on the application, and
will additionally impact on both the detection and veri�cation subcomponents' operation.

4.2 Violation Detection Methods

As described in the previous subsection, sampling radio interference and instantiating the CDF
interference model consumes signi�cant resources and would have an adverse e�ect on any appli-
cation. The detection component of the runtime assurance framework should be as lightweight
as possible, and as such, performing any resource intensive operations is not a viable option.
Instead, the detection module should infer from other relevant data present in the system to
detect violation of the model that may have occurred.
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There are many ways to infer changes in interference from performance data collected by
the system during normal operation. In this section we will examine three examples that have
been investigate for infering changes in interference.

4.2.1 Time

Many environments are cyclic, with multiple distinct periods of operation. In a typical o�ce
setting for instance, two main periods can be expected; one during o�ce hours, and another
other during non-o�ce hours. During o�ce hours interference will usually be more signi�cant
than during non-o�ce hours (due to usage of Wi-Fi access points and microwave ovens), and
therefore any model recorded in one time period would be violated when the second time period
was entered. In examples such as this, time is an acceptable trigger of the veri�cation system.
Figure 4.1 is captured from a university o�ce and illustrates this cyclic behaviour.
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Figure 4.1: Cyclic behaviour of o�ce environment.

In this situation, there are two possible modes of operation. The �rst is to use a simple timer
where after a �xed period the need for veri�cation is signalled. The timer is set to check every
n minutes, and will depend on how quickly the device needs to be able to detect and �ag a
violation. This will depend on factors such as the application requirements, the di�erences in
the two periods and the cost of veri�cation. The second is to use the time of day - this method
is more relevant in an environment whose cyclic behaviour is based on time of day. At these
set speci�c times of the day the system would signal that veri�cation was required.

4.2.2 Energy Usage

A second data type that can be used to infer changes in interference is the energy usage of the
radio, or system as a whole. Interference can a�ect communication in a number of di�erent
ways, such as increasing the number of required transmissions or increasing idle listening.
The radio is typically the most dominant energy consumer of an embedded system. Many

communication protocols must duty cycle to conserve su�cient energy to enable adequate
system lifetime, and duty cycling systems must �rst synchronise before data can be exchanged.
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In modern non-TDMA based systems, MAC protocols utilise packet strobing and energy
detection. The transmitter will repeatedly send out a packet with a �xed spacing until an
acknowledgement is received, or after a con�gured number of strobes without ACKs signals a
failure. The receiver will regularly wake up and enable its radio for a short period of time to
sample the energy of the channel, taking a pair of samples with con�gured schedule such that
if a strobe is present one of the samples will detect it. If a strobe is detected, the receiver will
keep its radio on to receive the following strobe in full.
Using this method, as the detection of energy within the channel is used to infer the trans-

mission of a strobe, any additional interference may be falsely detected as a strobe and will
cause the device extend listening and thus, use more energy.
Figure 4.2 illustrates this a�ect. As the interference level increases so does the radio on-time

and thus energy of the device. The �gure shows that this is the case in both an idle scenario
- where no packets are being exchanged with the node - and also in an active scenario where
there is a transmission every 2 seconds.
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Figure 4.2: Radio On time using ContikiMAC under di�erent interference loads.

This demonstrates that energy usage of a system can infer changes in interference patterns
in some situations, and this is especially useful as energy usage is easily computed (and even
stored by default) in many systems such as ContikiOS and TinyOS. Whilst changes in energy
usage may not always be caused by changes in interference, it would be a signi�cant signal that
the environment has changed and a more in-depth analysis and veri�cation is needed.
Using energy to infer possible violations of the interference model is a lightweight solution

that ful�ls the requirements of the framework for detection.

4.2.3 Communication Statistics

Communication statistics are another source that can be used to infer violations in the inter-
ference model. The most signi�cant e�ect that interference has on radio transmissions is in
causing collisions. Collisions will reduce the packet reception rate in an unreliable system or
increase the number of retransmission in a reliable system. Figure 4.3(b) shows an example of
this, such that as interference becomes more dominate PRR drops.
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Figure 4.3: interference a�ects communication statistics.

Monitoring both of these statistics - which are recorded by embedded network stacks by
default - is a lightweight mechanism to detect changes in interference.
A second communication statistic that is closely linked to interference is the number or

frequency of transmission back-o�s.
Many MAC protocols will check the channel is clear before transmitting. If a channel is

detected as clear, the transmission will continue, otherwise the transmission will be postponed.
Because of this, if the interference levels change, then the rate of back-o� will change propor-
tionally.
Monitoring the frequency of back-o�s by the MAC protocol is a lightweight approach to

inferring the channel conditions. Figure 4.3(a) illustrates an example of this, such that as
interference becomes more dominant, the number of successful attempts where the channel was
measured as clear over a �xed time period decreases.

4.2.4 Implementation

Each of the triggers de�ned above can be used to infer changes in interference. However, for a
particular instance of runtime assurance, it is better to choose the trigger that links best to the
requirements of the application. If an application has stringent communication requirements,
a trigger based on communication statistics is more suitable.
In addition to the examination of the individual triggers, we choose to examine triggering on

energy changes as part of a complete implementation of runtime assurance. As part of the car
parking scenario which was discussed in Section 2.4 a detection module that utilises an energy
trigger has been implemented. This implementation will be examined in detail and evaluated
as part of the 2nd integrated demo with results presented in D-4.4.

4.3 Violation Veri�cation

Whilst the aim of the detection system is to use lightweight mechanisms to detect possible
violations of the environmental model, the veri�cation system is not resource constrained, and
instead must o�er high accuracy in violation veri�cation. To accurately verify a violation has
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occurred, data needs to be collected to generate the environmental model, and compare it to
the model derived prior to deployment. If a violation has occurred this must then be �agged
with the central system, which is examined in more detail in the following section.
For interference there are two environmental models; the idle/busy CDF which aims to

capture the shape of interference and a simpler busy percentage model. In this section we will
examine how each model can be instantiated during run time and how they can be compared
with earlier derived models.

4.3.1 Model Instantiation

The same process utilised during pre-deployment should be used to gather the required data
to generate the new model.
For interference, this process involved high frequency sampling of RSSI taken by the radio.

Each sample was compared with a de�ned threshold to evaluate if the channel was busy or idle.
For the CDF model, the consecutive number of samples in the same state is important as

this represents the period length. Each of these period lengths is recorded in a frequency table
which is used to produce the corresponding CDF model. This is opposed to the busy channel
state model, where instead of measuring the number of consecutive samples in the same state,
a simple count of samples above the threshold with the total number of samples is needed.
The implementation of this mechanism has been described in detail in Deliverable D-1.2 [5].

It requires exclusive use of the main processor of the system during execution, as any reduction
in sampling frequency or period will produce errors, and as such, interrupts must be disabled to
reduce such errors. It is important that the application takes this into account when scheduling
the task. Whilst high resources are required, runtime assurance should provide bounds to how
long the process will take to aid in scheduling decisions.
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Figure 4.4: Comparison of IDLE-CDF generated with di�erent sampling durations.

The available runtime for sampling will be application dependant, and for some application a
short veri�cation process will be essential. For interference, Deliverable D-1.2 [5] recommended
a sampling duration of �ve minutes during pre-deployment data collection as this was shown
to best capture the interference within the channel.
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Our earlier work also recommends that the model be captured multiple times to increase its
accuracy. During run time, running the model for long durations is not feasible, and instead,
shorter sampling durations are needed to reduce any outages of the application, however a
shorter sampling duration may lead to lower accuracy.
Figure 4.4 shows an IDLE-CDF captured for a point in time with di�erent sampling durations

(300, 60, and 9.6 seconds). As it can be seen the shape of the distribution for 300 seconds is
similar to 60 seconds, however for 9.6 seconds a large deviation is seen. This suggests that
sampling for 60 seconds may o�er a similar representation of interference as provided by 300
seconds whereas 9.6 seconds may be too short. Whilst a sampling duration similar to that used
for during pre-deployment is recommended, this shows that if necessary a shorter sampling
duration may be acceptable.

4.3.2 Model Comparison

The model derived from information gathered at runtime must be compared to that generated
pre-deployment to evaluate if a violation has occurred. This operation is highly dependant on
the model in question, and can vary greatly in complexity.
For a model that represents interference as a percentage that the channel is busy, comparing

the two models is simple. The earlier model will be stored on the device at compile time with
an acceptable error threshold. The new model can thus be checked against this range and if
within the model has not been violated, otherwise where the new model falls outside of the
range there has been a violation.

DKL(P ||Q) =
∑
i

P (i)ln
P (i)

Q(i)
(4.1)

The more complex idle/busy CDF model presents a more complex operation, as comparing
two CDFs is a more involved operation. There are a number of statistical tools that can be
used to compare two probability distributions - however, the comparison must be made on the
node with scarce processing resources.
One such tool which requires limited processing is the Kullback-Leibler (KL) divergence

[9] presented in Equation 4.1 which measures the information lost when approximating one
probability distribution with another. As with the less complex model above, the CDF model
derived at deployment time with an acceptable KL divergence can be stored on the device
at compile time, then the KL divergence between the CDF recorded at deployment time and
the one taken at runtime can then be computed by the node. The calculated value can then
be compared with the acceptable divergence range, and if the model is within this range no
violation is considered to have occurred, otherwise a violation must have happened.
An example of using the KL divergence can be seen in Figure 4.5 which presents three

di�erent IDLE-CDFs recorded by the device over the course of a day. If the CDF recorded at
02:00 was used as the basis of the model, the divergence from this by the IDLE-CDFs recorded
at 10:00 and 18:00 could be calculated. For the 10:00 the KL divergence was 0.00114 whereas
for 18:00 it was higher at 0.029, thus; depending on the acceptable deviation, the model derived
at 10:00 could be within acceptable tolerances, whereas that taken at 18:00 may result in a
violation.
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Figure 4.5: Three IDLE-CDF recorded at di�erent times of the day

4.3.3 Implementation

In addition to our investigations into individual sub-components such as model instantiation
and model comparison a complete instance of run-time assurance has been implemented as
part of the 2nd integrated demo. As discussed in Section 2.4 the demo which focus on device
life-time utilises the radio energy protocol model presented in [12]. This protocol model make
use of the simpler busy percentage model for radio interference. For runtime assurance, our
implementation of the veri�cation module records high frequency samples of RSSI to compute
the interference model which is compared with the one stored to verify model violations. This
implementation will be examined in detail and evaluated as part of the 2nd integrated demo
with results presented in D-4.

4.4 Reporting and Remediation

When a violation is detected it must be reported to the central system such that remediative
actions can take place. Unlike detection and veri�cation, the reporting module will essentially
be the same regardless of the environmental model.
There are two available options; the report can be sent as an explicit message, or tacked

on to existing communications. In high throughput application where packets are frequently
generated, runtime assurance alarms can be aggregated with application data. An additional
�eld added to the packet header to contain an alarm �ag in this case is su�cent.
When a violation is detected, the system would set the �ag to cause every packet transmitted

to carry the alarm �ag. This o�ers the least overhead as the alarm is sent with application
data. However, additional information such as the derived model could not be incorporated.
The second option is to create an explicit message that is sent to the central system to

report the violation. With this method, space is avaliable such that data captured during
veri�cation can be included in message, as this information may aid in remediation techniques.
The controller can then choose to either try to compensate for the violation by adapting runtime
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parameters using the Runtime Adaptation of Protocol Parameters module or if the change in
environment is too signi�cant for runtime adaptation, to re-compute protocol selection and
their parametrization and to deploy new con�gurations.

4.4.1 Implementation

As part of the complete implementation of runtime assurance for the 2nd integrated demo, we
implemented reporting as an explicit message whose performance will be examined in more
detail. When a violation of the interference model is violated, an explicit message is created
that is sent to the control system. Within this alarm message, the current interference model
instance is also included for remediation. This implementation will be examined in detail and
evaluated as part of the 2nd integrated demo with results presented in D-4.4.
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5 Conclusions

In Deliverable D-1.1 we developed environmental and platform models which can be used to
estimate the performance of sensor net deployments with the main focus oin the environmental
aspects of temperature and radio interference. This work was expanded in Deliverable D-1.2
where we presented tools that collected the relevant data before deployment to parametrise the
developed models.
Since the publication of these deliverables we have continued this work and have focused on

developing techniques for runtime assurance to check during normal application operation if
the models we instantiated pre-deployment still hold.
In this document, we have presented a generic runtime assurance framework which consists

of three elements; detection, veri�cation and reporting and remediation. The detection sub-
component aims to provide lightweight mechanisms to infer model violations from information
already present in the system. The veri�cation subcomponent accurately veri�es the violation
detection by reusing tools developed in Deliverable D-1.2, and �nally the reporting subcom-
ponent, which reports the model violation to the central system. We have further shown how
this framework can be used for the two environmental aspects which we have focused on in
previous deliverables, temperature and radio interference. We examined Runtime Assurance
for each of these aspects with focus on triggers for lightweight detection and tools to compare
model instances.
Moving forward, we plan to use the work explored here, and in the previous Deliverables

D-1.1 and D1.2 for the integrated demonstration, in which we will examine the connections
between the work in WP1 with WP2 and WP3 in a real-world evaluation.
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