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Executive Summary

In this deliverable we propose an integrated dependability speci�cation language that enables
the user to de�ne dependability requirements for di�erent operation states of the program.
Together with the protocol and environment models developed in WP1 and WP2, this speci-
�cation forms an important input for protocol selection and con�guration to be developed in
Task 3.2 and the run-time adaption of protocol parameters to be developed in Task 3.3.
Existing requirement speci�cation languages are either overly complex and generic or lack

commonly agreed formal semantics. Consequently, a dedicated analytical framework is ex-
pected to best serve the requirements of the RELYonIT framework. The proposed speci�cation
language is based on previous work conducted by Zimmerling et al. [23]. We focus on three
key application properties: lifetime, data yield, and latency. As an extension of the original
concept, the speci�cation targets application-level performance metrics rather than merely the
operation of MAC protocols, and all constraints are associated with a quanti�ed probability of
violation.
Individual requirements can be speci�ed per protocol class and may change throughout the

application lifetime. A language integration enables to switch between these operation phases
at run-time and by this to activate di�erent dependability pro�les. In this document we pro-
pose two integration strategies for two sensor network programming languages from rather
di�erent points of the spectrum in terms of language abstraction level. The �rst integration
target is a high-level macroprogramming language (MPL) developed in the context of the 7th
framework program project makeSense. It consists of a stripped-down version of Java that has
been extended with constructs to facilitate the development of resource-constrained networked
embedded devices. The integration employed existing abstraction concepts found in MPL to
seamlessly enable run-time transition between di�erent operational states. The second, more
generic integration target is C code for the Contiki platform. Both solutions build on a common
XML-based speci�cation language.
Individual advantages and disadvantages of both solutions are discusses, yet the �nal decision

to adopt either approach will be postponed until more detailed requirements of the protocol
selection and optimization process (Task 3.2) are available.
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1 Introduction

This document presents a speci�cation language for dependability requirements to use in RE-
LYonIT applications. Our design allows sensor network programmers to enforce di�erent de-
pendability requirements throughout the system lifetime. Together with the protocol and en-
vironment models developed in WP1 and WP2, this speci�cation forms an important input for
protocol selection and con�guration to be developed in Task 3.2 and the run-time adaptation
of protocol parameters to be developed in Task 3.3.
Dependability is a general concept that may entail di�erent concerns. Because of this, we

start in Chapter 2 by presenting preliminary concepts about dependability, making the scope
of the project more precise in this respect. Next, we state the requirements that our language
design is to accomplish, and in light of those we survey existing approaches. We conclude the
chapter with a discussion about pros and cons of the solutions found in the existing literature.
Based on such discussion, Chapter 3 de�nes a dedicated analytical framework to specify

dependability requirements in RELYonIT. The proposed speci�cation language is based on
previous work conducted by Zimmerling et al. [23]. We focus on three key application proper-
ties: lifetime, data yield, and latency. As an extension of the original concept, the speci�cation
targets application-level performance metrics rather than merely the operation of MAC pro-
tocols, and all constraints are associated with a quanti�ed probability of violation. We also
present our initial thoughts on what speci�c optimization problem such formulation may entail.
Chapter 4 illustrates two approaches to blend the analytical framework with a concrete

sensor network programming language. In doing so, we explore two extremes in a spectrum of
language abstraction levels. On the one hand, we present a design to embed the RELYonIT
dependability requirement speci�cations within the makeSense macroprogramming language
(MPL): the results of e�orts within the FP7 EU-funded project makeSense [6]. On the other
hand, we also design a language embedding for Contiki/C, the speci�c dialect of the C language
used in programming for the Contiki [5] sensor network operating system.
We conclude the deliverable in Chapter 5 by providing initial thoughts about what factors

may in�uence the choice of embedding the dependability requirement speci�cation in either
sensor network programming language.
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2 Preliminaries

In this chapter we provide brief background information useful for motivating the design choices
illustrated in the rest of the deliverable.

2.1 Considerations on Dependability

The notion of �dependability� in networked embedded systems may take di�erent forms and
refer to di�erent concepts. Therefore, here we seek to brie�y recap the possible semantics
associated to the notion of dependability and how they play out in the context of the project.
Figure 2.1 reports a schematic view of the dependability taxonomy by Avizienis et al. [2].

The concept of dependability includes four major aspects:

� availability, which measures the readiness for correct service of the system, namely, how
prompt are the system's reactions when a service is requested;

� reliability, which measures the continuity of correct service of the system, namely, to what
extent the system can be relied upon to provide the required services;

� safety, which measures the absence of catastrophic consequences on the user(s) and the
environment due to the system not meeting the application requirements;

� security, which measures the system's ability to avoid improper alterations of its behavior
in case of (intentional or accidental) malfunctioning.

Figure 2.1: Taxonomy of dependability concepts - taken from [2].
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The application use cases we consider in the project, described in Deliverable 4.1, exhibit
dependability requirements that are mostly related to reliability concerns. For example, the
ventilation on-demand scenario requires the system to meet given constraints in data loss,
packet latency, and system lifetime. All these aspects, and especially the latter, determine
the extent to which the system can meet the application requirements. Similar considerations
apply, for instance, to the outdoor parking management scenario as well.
Based on these observations, we mainly consider dependability requirements dealing with re-

liability concerns. Aspects of availability, safety, and security, although important, are however
not in the focus of the project's work.

2.2 Requirements

The dependability speci�cation language we design for RELYonIT must meet some key require-
ments, such as:

� it must empower developers with ways to express dependability requirements on the
underlying networking protocols;

� it must provide inputs for protocol selection and parameterization (Task 3.2), thus being
amenable to automated processing by dedicated optimization tools;

� it must allow embedding within existing programming languages to allow the speci�cation
of di�erent requirements based on an application's execution state.

Approaches to specifying dependability requirements exist in the most disparate domains. In
the following, we brie�y discuss those that appear most related to the project's objectives, high-
lighting what features we may borrow and what aspects would rather prevent their immediate
application in the context we consider.

2.3 Existing Approaches

Specifying dependability requirements is a speci�c instance of the general problem of non-
functional requirement speci�cation [12, 15]. To this end, the existing literature includes several
solutions based on diverse formalisms. In most such cases, however, the di�erent approaches
may be conducted to the seminal work about interactions between machine and surrounding
environment proposed by Jackson [11].
Approaches to requirement speci�cation at the design stage rely on variations and extensions

of existing notations, such as UML [8], or are based on dedicated formally-de�ned frameworks.
For example, Lou et al. [16] propose a pattern-based approach to the speci�cation of non-
functional requirements, and integrate such design into existing functional UML models. The
pattern-based nature of the approach favors re-use of the requirement speci�cations across
applications. Alloy [10] de�nes a language framework for requirement speci�cation that o�ers
a syntax compatible with graphical object models, and a set-based formula syntax powerful
enough to express complex constraints and yet is amenable to a fully automatic semantic
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analysis. In turn, Alloy conceptually builds on the more general Z speci�cation language [20]
and the underlying semantics.
Various forms of temporal logic are also often used to specify non-functional requirements [21].

In most cases, these are given as input to model checking tools that probabilistically assess
whether a performance objective speci�ed in temporal logic eventually holds in the system,
as in the work by Cysneiros and Praido [4]. A di�erent example is that of Aburub et al. [1],
who use a custom temporal logic to specify non-functional requirements in business processes.
These are then translated into performance objectives and corresponding con�gurations of the
underlying business process execution engine.
At the implementation stage, for example, software contracts [18] are a key concept in design-

by-contract software engineering methodologies. It prescribes that software designers should
de�ne formal, precise, and veri�able interface speci�cations for software components. Such
speci�cations extend the ordinary de�nition of abstract data types with preconditions, post-
conditions, and invariants. These speci�cations are in fact referred to as �contracts�, in accor-
dance with a conceptual metaphor with the conditions and obligations of business contracts.
In the telecom and networking domains, service-level agreements (SLAs) are negotiated agree-

ments between two or more parties, where one is the user and the others are providers. Such
agreements can be a legally binding formal or informal contract. A SLA entails a common un-
derstanding about services, priorities, responsibilities, guarantees, and warranties. Each area
of service has an associated �level of service� de�ned. The SLA may specify, for example, the
levels of availability, performance, operation, and billing. Such levels of service can also be
speci�ed to di�erent degrees, e.g., in terms of a minimum or expected level of service. This
generally allows customers to be informed what to expect at the minimum, while providing
a measurable average target value. In terms of internal structuring, SLAs commonly include
segments to address a de�nition of services, performance measurement techniques, a problem
management schema, customer duties, warranties, disaster recovery, and possible termination
of agreement. To ensure that SLAs are consistently met, these agreements are often designed
with speci�c lines of demarcation and the parties involved are required to meet regularly to
create an open forum for communication.
SLAs have been applied in disparate domains. In enterprise-level service-oriented architec-

tures, for example, SLAs are used to obtain, monitor, and enforce Quality of Service guarantees
between customers and service providers, and to establish the monetary penalties should the
guarantees be violated [17]. Similar applications of SLAs are found also in more open envi-
ronments. Keller et al. [14], for example, de�ne a framework to use SLAs for web services for
automatically establishing a billing system depending on the enforced performance guarantees.
At infrastructure level, SLAs are often used to specify the service guarantees of backbone net-
works. Fawaz et al. [7], for example, propose SLA de�nitions applied to optical networks to
manage the bandwidth capacity o�ered by such network technologies. They de�ne parameters
that could be included in their SLA, as well as their values for four classes of services. Di�erent
service types�from leased wavelength to bandwidth on demand�are also distinguished.
As opposed to the techniques above, analytical frameworks are often employed to quanti-

tatively study the performance of computer systems [13]. Generally speaking, the purpose of
an analytical framework is to give the study a disciplined methodology allowing a systematic
evaluation of the data at hand. Similar approaches are vastly used especially in networking,
where a body of work already exists leveraging analytical frameworks to study the performance
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of diverse network technologies, from traditional land-line telecommunication systems to mod-
ern wireless networks. For example, Bai et al. [3] de�ne an analytical framework to study the
impact of mobility on ad-hoc network routing protocols. The performance of supply chains is
analytically studied by Gunasekaran et al. [9]. Instead, C-meter [22] is an analytical framework
to study and compare the performance of cloud computing systems.
However, using an analytical framework only de�nes a very generic methodology, which then

needs to be customized to the speci�c needs of the applications and the systems at hand.

2.4 Discussion

The example approaches discussed above identify very di�erent methodologies, each with its
pros and cons w.r.t. possible use in RELYonIT.
Approaches to requirement speci�cation at design and implementation stage, for example,

while enjoying a well-speci�ed underlying semantics and being generally amenable to automated
processing, appear overkill for the problem at hand, in that, for example, they lend themselves
to the speci�cation of arbitrary mechanisms, both functional and non-functional. Specifying
dependability requirements in RELYonIT, however, is expected to account for a limited and
well-de�ned set of performance metrics and associated requirements.
SLAs, on the other hand, do match closely the application domains we target in RELYonIT.

However, their speci�cation often lacks a commonly agreed-upon semantics and can not al-
ways be automatically processed, a key requirement in the project in that the dependability
speci�cation shall serve running applications and be used to dynamically adapt their behavior.
It appears that a dedicated analytical framework can best serve the purpose at hand. We

will address its speci�c instantiation in the context of RELYonIT in the next chapter.
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3 Specifying Dependability Requirements

To de�ne an analytical framework for specifying dependability requirements, we borrow from
Zimmerling et al. [23], who de�ned an analytical framework for run-time adaptation of MAC
protocol parameters in low-power wireless networks. We revise their formulation in two key
aspects: i) we adapt the framework to account for application-level requirements independent
of what protocol layer is optimized, as opposed to the work of Zimmerling et al. [23] who
only targeted the MAC level; and ii) we extend their formulation so that possible performance
constraints are associated to a quanti�ed probability of violation, unlike the generic �soft con-
straint� concept originally used [23].

3.1 Formulation

We consider as example three performance metrics found in the use case applications of De-
liverable 4.1: system lifetime T , data yield R, and latency L. These will be a function of a
vector c that includes the chosen protocol among those available and its operating parameters.
We call c a protocol con�guration for short, and term the functions T (c), R(c), and L(c) the
speci�c values of T , R, and L when the system applies protocol con�guration c.
We treat all but one performance objective as constraints. This way, a dependability re-

quirement entails maximizing or minimizing one performance objective subject to constraints
on the remaining metrics, as in

Maximize/Minimize M1(c)
Subject to M2(c) ≥,≤ C1 probability 1− Pc1

M3(c) ≥,≤ C2 probability 1− Pc2

(3.1)

where each Mi is one among {T,R,L} and {C1, C2} are constraints to be eventually satis�ed
with probability 1 − Pc, where Pc is the user-provided maximum tolerance for violating the
constraint.
Such formulation allows to analytically express the dependability requirements arising in

most low-power wireless applications, notably including the motivating use cases in RELYonIT
described in Deliverable 4.1. For example, the dependability requirements in the ventilation on
demand use case can be formulated as:

Maximize T (c)
Subject to R(c) ≥ 75% probability 1

R(c) ≥ 90% probability 0.8
R(c) ≥ 95% probability 0.5
L(c) ≤ 5min probability 1
L(c) ≤ 1min probability 0.8

(3.2)

Copyright © 2013 RELYonIT consortium: all rights reserved page 11
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The example also demonstrates how it is possible to express di�erent levels of severity in
possibly violating the given constraints. These are speci�ed by expressing multiple constraints
on the same performance metric associated to di�erent probabilities of violation. In the ex-
ample, data yield shall be guaranteed to be above 75%; no violations of such constraints are
tolerated. Di�erently, the additional constraints also state that data yield shall possibly be
above 90% in at least 80% of the application lifetime, and shall be above 95% in at least half
of the application lifetime.
The speci�cation of a performance metric as the single optimization objective is also not

mandatory. The dependability requirement arising in the outdoor parking management scenario
of Deliverable 4.1, for example, may be expressed only as a set of constraints:

Maximize/Minimize ∅
Subject to R(c) ≥ 90% probability 1

R(c) ≥ 95% probability 0.8
R(c) ≥ 99% probability 0.5
L(c) ≤ 30sec probability 1
L(c) ≤ 10sec probability 0.8
T (c) ≥ 6months probability 1

(3.3)

With this formulation, the requirement is met as long as a protocol's performance satis�es the
given constraints during the application's lifetime.

3.2 Optimization Problem

The problem of �nding a protocol con�guration c according to the formulation above takes
di�erent forms depending on how the constraints are possibly satis�ed.
As long as all constraints are satis�ed for a protocol con�guration c, network designers

may not care about what speci�c value is taken by the performance metrics involved in the
constraint de�nitions. In such a case, any protocol con�guration c that maximizes/minimizes
the one performance objective M1(c) in equation (3.1) and satis�es all related constraints
is acceptable. The problem thus becomes a single-objective optimization problem subject to
multiple constraints.
On the other hand, network designers may further consider how a given protocol con�guration

c actually satis�es the stated constraints. For example, they may express a speci�c preference
between two solutions that both maximizes/minimizes the one performance objective M1(c)
and satisfy all related constraints, but with di�erent values for M2(c) and M3(c) in equation
(3.1). In such a case, the problem becomes a multi-objective optimization problem (MOP).
There may indeed exist a set of solutions that are optimal in the sense that no other solution
is superior in all objectives, while keeping every constraint satis�ed. These are known as
Pareto-optimal solutions and represent di�erent optimal trade-o�s among the involved metrics.
Task 3.2 and 3.3 in the project will explore the trade-o�s involved in tackling these di�erent

forms of optimization problem. While the latter formulation allows more sophisticated opti-
mization of the network performance, the processing overhead to generate all possible solutions
to the multi-objective optimization problem might be overkill.
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4 Language Embedding

We present two designs to embed the dependability requirement speci�cation discussed above
in a concrete programming language. In doing so, we explore two extremes in a spectrum of
language abstraction levels. On the one hand, we present a design to embed the RELYonIT
dependability requirement speci�cations within the makeSense macroprogramming language
(MPL). This is the results of e�orts within the FP7 EU-funded project makeSense [6], whose
goal was to provide programming support for integrating business processes with wireless sensor
networks. Nonetheless, sensor network programmers may also use the makeSense MPL as a
stand-alone high-level programming language. On the other hand, we also design a language
embedding for Contiki/C, the speci�c dialect of the C language used in programming for the
Contiki [5] sensor network operating system.
Both solutions, however, share the basic building blocks of the corresponding tool-chain and

a common speci�cation of dependability requirements, which we describe next. Moreover, our
designs are based on the following assumptions:

� Dependability requirements are applied to a speci�c protocol; indeed, the semantics of
performance metrics as well as the speci�c constraints that the developers may impose
are, in most cases, protocol-speci�c, or at minimum related to a homogeneous class of
protocols. For example, in a data collection protocol the data yield most often refers to
the net packet delivery at a single data sink, whereas for a data dissemination protocol
it relates to the percentage of packets delivered to multiple destinations.

� Dependability requirements may change over the application execution; the motivating
application scenarios in Deliverable 4.1 already exhibit time-varying dependability re-
quirements, for example, depending on unpredictable emergency situations or drastic
changes in the environmental conditions. More generally, the class of applications we tar-
get in the project are often characterized by di�erent modes of operations, which naturally
correspond to di�erent dependability requirements.

� Dependability requirements apply system-wide, namely no two nodes in the network may
have di�erent dependability requirements for the same protocol at the same time. Two
aspects relate to this assumption. On the one hand, allowing di�erent dependability
requirements at di�erent nodes greatly complicates the optimization problem, likely to
the point of making it intractable [23]. On the other hand, allowing di�erent dependability
requirements at di�erent nodes entails the possibility that the optimization step indicates
di�erent protocols or di�erent parameters for the same protocol at di�erent nodes. Such
mixed con�gurations can rarely actually work, as most existing protocols provide no
inter-operability and assume a homogeneous parameter setting.

The assumptions above are key to designing the language embedding of dependability re-
quirements. Moreover, they impact both the conceptual framework where the protocol selection
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Figure 4.1: Design sketch of RELYonIT tool-chain.

and parameterization functionality (Task 3.2) will operate, and the underlying system support.
In particular, based on the third assumption above, the system will need to be equipped with
functionality to ensure that when a switch between di�erent protocols occurs, or a change
of parameters for the same protocol is triggered, such operation is carried out consistently
throughout the network. This can be implemented either at the application level or within the
individual protocols. We choose the latter as such mechanisms are, most likely, protocol-speci�c
and hence require intimate knowledge of a protocol's operation.

4.1 Tool-chain

Although the design of the RELYonIT tool-chain depends on how protocol selection and pa-
rameterization concretely occurs and in what forms the corresponding solutions are presented,
designing a proper language embedding requires to identify the basic building blocks going from
the speci�cation of dependability requirements to obtaining running code.
Figure 4.1 shows a design sketch for such a tool-chain. A protocol selection and parameteriza-

tion tool, developed as part of Task 3.2, takes a machine-readable speci�cation of dependability
requirements as input, described in Section 4.2, together with other information useful to de-
termine the most appropriate protocol to use and its parameters; for example, estimates on the
network topology characteristics.
The output of the protocol selection and parameterization tool is one or more protocol bun-

dles. A single bundle includes the chosen protocol implementation and a prede�ned set of
operating parameters for the protocol that are known to satisfy, based on the optimization
inputs, the dependability requirements at hand. Multiple such sets of optimized operating pa-
rameters may be obtained from the protocol selection and parameterization tool for the same
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protocol, corresponding to di�erent dependability requirements. When the application changes
the current dependability requirement, the individual protocols will switch among the sets of
optimized parameters. Optionally, the protocol bundle may also include an adaptation logic
component, used to tune the parameters at run-time as the network conditions mutate outside
of what was foreseen during the o�-line optimization step; for example, whenever the topology
characteristics drastically change. These adaption logic components are subject of Task 3.3.
The protocol bundles are deployed together with the executable application code and a thin

software layer that implements back-end support functionality to manage protocol bundles.
This contains a language-speci�c encoding of the dependability requirements considered during
the optimization process, and is in charge of factoring out the monitoring functionality needed
to trigger protocol adaptations based on changing environmental conditions. The back-end
support interface and the way programmers access the requirement encoding are language-
speci�c, as we discuss next.
The application interacts with the back-end support for setting the current dependability

requirement. As these or the network conditions change, the back-end support may: i) switch
between di�erent protocol bundles, taking care of the necessary shut-down of currently running
protocols and of the start-up of new protocols; ii) re-con�gure a protocol based on the pre-
de�ned sets of parameters included in the bundle, possibly helping with managing the necessary
distributed coordination required; or iii) execute the adaptation logic, if available, should no
prede�ned parameters be at disposal for the speci�c situation.

4.2 Dependability Requirement Speci�cation

We use an XML �le to specify the dependability requirements input to the protocol selection and
parameterization tool in Figure 4.1. The corresponding XML schema is reported in Listing 4.1.
This maps to the analytical framework de�ned in Chapter 3, equation (3.1).
The schema in Listing 4.1 additionally includes a name (supposed to be unique within the

application) for the speci�c dependability requirement, and an indication as to what protocol
class this requirement applies to. This may take values COLLECTION, DISSEMINATION, or P2P.
The former two represent the one-to-many and many-to-one interaction patterns commonly
used in sensor networks to enable communication between a node issuing an action and a set
of nodes where the action is executed [19]. Collection protocols are used, for example, for a
node to gather data from other nodes. Dually, dissemination protocols are used to request the
execution of a set of actions on other nodes, e.g., to issue commands to actuators. In contrast,
P2P protocols do not focus on a special node, but rather enable a global network behavior and
are executed cooperatively by the entire sensor network through many-to-many communication.
A concrete XML example �le based on such schema is reported in Listing 4.2, corresponding

to the speci�cation of the dependability requirement in the ventilation on-demand scenario
of equation (3.2) in Section 3. The requirement is named Sample Requirement (line 3), and
applies to protocols in the Collection class. Note that every possible performance metric has a
default binary operator when used as a constraint. For example, in lines 11-13 the data yield R
is implicitly required to be above the threshold of 0.75, as it would be meaningless otherwise.
Similarly, in line 26-28 the latency L is required to be below 5 seconds.
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Listing 4.1: XML schema for Contiki/C embedding.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>

2 <xs:schema version="1.0" xmlns:xs="http: //www.w3.org /2001/ XMLSchema">

3 <xs:element name="dependabilityReq" type="dependabilityReq"/>

4

5 <xs:complexType name="dependabilityReq">

6 <xs:sequence >

7 <xs:element name="name" type="xs:string"/>

8 <xs:element name="protocol_class" type="protocol_class"/>

9 <xs:element name="objective" type="metric" minOccurs="0"/>

10 <xs:element name="criteria" type="criteria" minOccurs="0"/>

11 <xs:element name="constraints" type="constraint"

12 minOccurs="0" maxOccurs="unbounded"/>

13 </xs:sequence >

14 </xs:complexType >

15

16 <xs:simpleType name="protocol_class">

17 <xs:restriction base="xs:string">

18 <xs:enumeration value="COLLECTION"/>

19 <xs:enumeration value="DISSEMINATION"/>

20 <xs:enumeration value="P2P"/>

21 </xs:restriction >

22 </xs:simpleType >

23

24 <xs:simpleType name="metric">

25 <xs:restriction base="xs:string">

26 <xs:enumeration value="YIELD"/>

27 <xs:enumeration value="LIFETIME"/>

28 <xs:enumeration value="LATENCY"/>

29 </xs:restriction >

30 </xs:simpleType >

31

32 <xs:simpleType name="criteria">

33 <xs:restriction base="xs:string">

34 <xs:enumeration value="MAX"/>

35 <xs:enumeration value="MIN"/>

36 </xs:restriction >

37 </xs:simpleType >

38

39 <xs:complexType name="constraint">

40 <xs:sequence >

41 <xs:element name="metric" type="metric" minOccurs="0"/>

42 <xs:element name="probability" type="xs:float"/>

43 <xs:element name="threshold" type="xs:float"/>

44 </xs:sequence >

45 </xs:complexType >

46 </xs:schema >
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Listing 4.2: Concrete XML instantiation of dependability requirement.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <dependabilityReq xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

3 xsi:noNamespaceSchemaLocation="schema.xsd">

4 <name>Sample Requirement </name>

5 <protocol_class >COLLECTION </protocol_class >

6 <objective >LIFETIME </objective >

7 <criteria >MAX</criteria >

8 <constraints >

9 <constraint >

10 <metric >YIELD</metric >

11 <threshold >0.75</threshold >

12 <probability >1.0</probability >

13 </constraint >

14 <constraint >

15 <metric >YIELD</metric >

16 <threshold >0.9</threshold >

17 <probability >0.8</probability >

18 </constraint >

19 <constraint >

20 <metric >YIELD</metric >

21 <threshold >0.95</threshold >

22 <probability >0.5</probability >

23 </constraint >

24 <constraint >

25 <metric >LATENCY </metric >

26 <threshold >5</threshold >

27 <probability >1</probability >

28 </constraint >

29 <constraint >

30 <metric >LATENCY </metric >

31 <threshold >1</threshold >

32 <probability >0.8</probability >

33 </constraint >

34 </constraints >

35 </dependabilityReq >
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4.3 Embedding within makeSense MPL

The makeSense macroprogramming language (MPL) is a high-level extensible programming
language for sensor networks. Extensibility here refers to the ability to integrate existing
programming abstractions with makeSense by embedding custom language constructs in the
programming framework. In the following, we brie�y describe MPL's key concepts, and illus-
trate our design for embedding the speci�cation of RELYonIT dependability requirements in
makeSense.

4.3.1 MPL Overview

To properly identify the units of functionality, reuse, and extensions, makeSense de�nes a notion
of meta-abstraction, implemented through di�erent �concrete� abstractions. These provide the
key concepts enabling interaction with the sensor network. Their composition can be achieved
by using common control �ow statements, provided by a core language that serves as the �glue�
among macroprogramming abstractions. The core language is a stripped-down version of Java
with extensions to support resource-constrained embedded systems.
Figure 4.2 shows a UML meta-model for the MPL meta-abstractions. The model focuses on

the notion of action, a task executed by one or more sensor nodes. Actions are separated into
local, whose e�ect is limited to the node where the action is invoked (e.g., acquiring a reading
from the attached temperature sensor), and distributed, whose e�ect spans multiple nodes.
Distributed actions are further divided into tell, report, and collective actions. In essence, the

former two export the functionality of protocols in the COLLECTION and DISSEMINATION classes
at the MPL level. For the former, the needed data acquisition occurring on each involved
node is speci�ed by a local action given as parameter to the report action. Similarly, collective
actions provide the functionality of P2P-class protocols within MPL.
Importantly, distributed actions may optionally have modi�ers associated with them, �cus-

tomizing� their behavior. makeSense provides two types of modi�ers, target and data operator.

Collective Action

Report ActionTell Action

Local Action

Action

Distributed Action

Meta-Abstraction

Modifier

Target

Data Operator
<<use>>

<<use>>

<<use>>

<<use>>

1

0..1

Figure 4.2: A model for the meta-abstractions of makeSense MPL.
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f(x1 .. xn) 

tell action report action collective action target data operator

distributed actions modifiers

Figure 4.3: Distributed actions and modi�ers.

In heterogeneous scenarios, programmers must be able to map actions to the set of nodes of
interest. A target identi�es a set of nodes satisfying application constraints, and gives the
ability to apply a distributed action to the nodes in this set. Instead, a report action may have
a data operator, specifying processing performed on the results after gathering and before they
are returned to the caller, e.g., to �lter or aggregate the data. Figure 4.3 provides a graphical
intuition of the relationship between distributed actions and modi�ers.
To create an instance of a meta-abstraction, a class implementing its interface must be

de�ned in the core language. As abstraction implementations typically closely interact with
the operating system, methods of abstraction classes are implemented in C using a native code
interface provided by the core language.

4.3.2 Modi�ed Meta-model and Interfaces

We embed a notion of dependability requirement in makeSense MPL by providing an additional
modi�er that customizes the behavior of distributed actions by imposing given dependability

Collective Action

Report ActionTell Action

Local Action

Action

Distributed Action

Meta-Abstraction

Modifier

Target

Data Operator

<<use>>

<<use>>

<<use>>

<<use>>

1

0..1

DependabilityReq
0..1

Figure 4.4: A modi�ed meta-model for MPL meta-abstractions: DependabilityReq is added to
specify dependability requirements for distributed actions. Greyed-out concepts are
not a�ected by the modi�cation.
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Listing 4.3: MPL interface for specifying dependability requirements.

1 interface DependabilityReq extends Modifier {

2 Objective getObjectiveMetric ();

3 List getConstraints ();

4 }

requirements. Figure 4.4 shows the modi�ed MPL meta-model. A distributed action may have
zero or one associated dependability requirement(s). As a result of the original structure of the
MPL meta-model, such a dependability requirement may concretely apply to tell, report, or
collective actions.
Listing 4.3 shows the MPL interface for DependabilityReq. Concrete objects implement-

ing that interface are generated by a factory class called RELYonIT with a unique method
DependabilityReq createDependabilityReq(String name) used to extract from the back-
end support the encoding of a named dependability requirement, based on the XML speci�ca-
tion described in Section 4.2. Such objects are immutable: indeed, methods in Listing 4.3 only
allow to gather information from the object without changing it.
DependabilityReq objects are passed as parameter to a setDependabilityReq (Dependa-

bilityReq r) method or returned by a DependabilityReq getDependabilityReq() method,
both added to the DistributedAction interface. The implementation of both methods dele-
gates the processing to the underlying back-end support. An example use is

DependabilityReq sample_requirement = RELYonIT.createDependabilityReq("Sample Requirement");

Report report_action = new MyReport ();

report_action.setDependabilityReq(sample_requirement );

Depending on what type of distributed action the requirement needs to be applied to and
what concrete abstraction is currently in use for the same meta-abstraction, the back-end
support will carry out the necessary operations to change the underlying protocols' behavior. As
already mentioned, this may entail switching the protocol, selecting a di�erent set of operating
parameters among those found in the protocol bundle, or running the adaptation logic, if
available. The latter may be implemented by extending the existing self-optimization framework
in makeSense [6].

4.4 Embedding within Contiki/C

The current practice of programming sensor networks largely relies on low-level languages,
mostly based on C [19]. The Contiki operating system is a sensor network programming
platform based on C with the addition of a few dedicated macros that provide concurrency and
synchronization primitives. In the following we describe an approach to embed dependability
requirement speci�cations in Contiki/C.
Similar to makeSense, the unique name speci�ed in the XML �le for a given dependability

requirement is used in Contiki/C to obtain a language-speci�c encoding of the requirement itself,
used to set the desired dependability requirement for given protocols classes. An example use
is

dep_req_t sample_requirement = relyonit_dependability_req("Sample Requirement");

collection_set_dependability(sample_requirement );
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where the dependability requirement speci�cation for �Sample Requirement� derives from the
XML example in Listing 4.2. Speci�cally, the back-end support provides a C function

dep_req_t relyonit_dependability_req(char* name);

that maps the named dependability speci�cation in the XML �le to an opaque data structure
dep_req_t that stores a C-speci�c encoding of the requirement. This is given as input to C
functions speci�c to the three protocol classes we introduce in Section 4.2, such as

void protocolclassname_set_dependability(dep_req_t requirement );

that are able to parse the information in dep_req_t and take care of the necessary operations.
Similar to makeSense, these include switching protocols, selecting a di�erent set of operating
parameters among those in a protocol's bundle, or running the adaptation logic, if available.

4.5 Implementation Notes

The implementation of the two designs above is actually similar. Before the optimization
process takes place, the XML �les containing the dependability requirements must be parsed
to collect the actual requirement speci�cations and the associated names. Next, we must
generate language-speci�c encodings of the dependability requirements at hand, and link them
to the back-end support implementation. In addition, the protocol bundles must be formed by
coupling the implementation of the chosen protocols with the sets of operating parameters and
their adaptation logic, if available.
At run-time, when a dependability requirement is set for which optimized parameters are

known, the back-end support simply applies the parameters found in the corresponding bundle.
Should there be no knowledge on what parameters to use for satisfying a given dependability
requirement based on current network conditions, the underlying back-end support will execute
the adaptation logic in the same bundle.
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5 Conclusion

In this deliverable, we discussed the facets of dependability relevant for RELYonIT, and brie�y
surveyed existing work related to a speci�cation of dependability requirements. Next, we de�ned
an analytical framework for their speci�cation in RELYonIT and described two designs to embed
such speci�cation within existing sensor network programming languages.
In particular, the two designs we outlined have pros and cons. Unlike Contiki/C, the

makeSense-based design allows programmers to enjoy a high-level of abstraction in implement-
ing the application-speci�c processing. On the other hand, the current code base for Contiki/C
includes more protocol implementations that the protocol selection and optimization tool may
pick from. Also, automatically generating C code for the back-end support in Contiki/C may
be assisted by plenty of existing code generation tools that are not available for MPL.
Our immediate plan is to identify speci�c tools for parsing XML and for automatically

generating C code. Based on this, we will assess the expected implementation work for the two
designs and settle on a speci�c choice.
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